These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28280556)

  • 1. A transverse isotropic viscoelastic constitutive model for aortic valve tissue.
    Anssari-Benam A; Bucchi A; Screen HR; Evans SL
    R Soc Open Sci; 2017 Jan; 4(1):160585. PubMed ID: 28280556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: Application to biaxial deformation.
    Anssari-Benam A; Tseng YT; Bucchi A
    J Mech Behav Biomed Mater; 2018 Sep; 85():80-93. PubMed ID: 29859418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation.
    Anssari-Benam A; Bader DL; Screen HR
    J Mater Sci Mater Med; 2011 Feb; 22(2):253-62. PubMed ID: 21221737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Deformation of the Elastin Network in the Aortic Valve.
    Anssari-Benam A; Bucchi A
    J Biomech Eng; 2018 Jan; 140(1):. PubMed ID: 28916836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation.
    Anssari-Benam A; Tseng YT; Holzapfel GA; Bucchi A
    Acta Biomater; 2019 Apr; 88():120-130. PubMed ID: 30753940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-based constitutive modelling of local material properties of canine aortas.
    Laksari K; Shahmirzadi D; Acosta CJ; Konofagou E
    R Soc Open Sci; 2016 Sep; 3(9):160365. PubMed ID: 27703701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate-dependent mechanical behaviour of semilunar valves under biaxial deformation: From quasi-static to physiological loading rates.
    Anssari-Benam A; Tseng YT; Holzapfel GA; Bucchi A
    J Mech Behav Biomed Mater; 2020 Apr; 104():103645. PubMed ID: 32174403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.
    Anssari-Benam A; Screen HRC; Bucchi A
    J Mech Behav Biomed Mater; 2019 May; 93():230-245. PubMed ID: 30844614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the rate-dependency of the mechanical behaviour of the aortic heart valve: An experimentally guided theoretical framework.
    Anssari-Benam A; Tseng YT; Pani M; Bucchi A
    J Mech Behav Biomed Mater; 2022 Oct; 134():105341. PubMed ID: 35969929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanical properties of porcine aortic valve tissues.
    Sauren AA; van Hout MC; van Steenhoven AA; Veldpaus FE; Janssen JD
    J Biomech; 1983; 16(5):327-37. PubMed ID: 6885834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain transfer through the aortic valve.
    Anssari-Benam A; Gupta HS; Screen HR
    J Biomech Eng; 2012 Jun; 134(6):061003. PubMed ID: 22757500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlinear anisotropic model for porcine aortic heart valves.
    Li J; Luo XY; Kuang ZB
    J Biomech; 2001 Oct; 34(10):1279-89. PubMed ID: 11522307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent mechanical properties of aortic valve cusps: effect of glycosaminoglycan depletion.
    Borghi A; New SE; Chester AH; Taylor PM; Yacoub MH
    Acta Biomater; 2013 Jan; 9(1):4645-52. PubMed ID: 22963848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic time-dependant behaviour of the aortic valve.
    Anssari-Benam A; Bader DL; Screen HR
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1603-10. PubMed ID: 22098862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigations of the human oesophagus: anisotropic properties of the embalmed mucosa-submucosa layer under large deformation.
    Durcan C; Hossain M; Chagnon G; Perić D; Karam G; Bsiesy L; Girard E
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1685-1702. PubMed ID: 36030514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.