These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 28280819)

  • 1. Microchip-based single-cell functional proteomics for biomedical applications.
    Lu Y; Yang L; Wei W; Shi Q
    Lab Chip; 2017 Mar; 17(7):1250-1263. PubMed ID: 28280819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research.
    Wei W; Shin YS; Ma C; Wang J; Elitas M; Fan R; Heath JR
    Genome Med; 2013; 5(8):75. PubMed ID: 23998271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell Omics Analyses Enabled by Microchip Technologies.
    Deng Y; Finck A; Fan R
    Annu Rev Biomed Eng; 2019 Jun; 21():365-393. PubMed ID: 30883211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell Multiplexed Proteomics on the IsoLight Resolves Cellular Functional Heterogeneity to Reveal Clinical Responses of Cancer Patients to Immunotherapies.
    Liu D; Paczkowski P; Mackay S; Ng C; Zhou J
    Methods Mol Biol; 2020; 2055():413-431. PubMed ID: 31502163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics.
    Wlodkowic D; Cooper JM
    Expert Rev Mol Diagn; 2010 May; 10(4):521-30. PubMed ID: 20465506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response.
    Zhang R; Yuan H; Wang S; Ouyang Q; Chen Y; Hao N; Luo C
    Sci Rep; 2017 Feb; 7():42200. PubMed ID: 28181485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridging the gap: microfluidic devices for short and long distance cell-cell communication.
    Vu TQ; de Castro RM; Qin L
    Lab Chip; 2017 Mar; 17(6):1009-1023. PubMed ID: 28205652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies.
    Yang L; George J; Wang J
    Proteomics; 2020 Jul; 20(13):e1900226. PubMed ID: 31729152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy.
    Gohil SH; Iorgulescu JB; Braun DA; Keskin DB; Livak KJ
    Nat Rev Clin Oncol; 2021 Apr; 18(4):244-256. PubMed ID: 33277626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell proteomic analysis.
    Pham T; Tyagi A; Wang YS; Guo J
    WIREs Mech Dis; 2021 Jan; 13(1):e1503. PubMed ID: 32748522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput, multiparameter analysis of single cells.
    Haselgrübler T; Haider M; Ji B; Juhasz K; Sonnleitner A; Balogi Z; Hesse J
    Anal Bioanal Chem; 2014 May; 406(14):3279-96. PubMed ID: 24292433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
    Khondakar KR; Dey S; Wuethrich A; Sina AA; Trau M
    Acc Chem Res; 2019 Aug; 52(8):2113-2123. PubMed ID: 31293158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Microfluidics Applied to Single Cell Operation.
    Zhu XD; Chu J; Wang YH
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29220116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumors on chips: oncology meets microfluidics.
    Wlodkowic D; Cooper JM
    Curr Opin Chem Biol; 2010 Oct; 14(5):556-67. PubMed ID: 20832352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Trends of Microfluidic Single-Cell Technologies.
    Shinde P; Mohan L; Kumar A; Dey K; Maddi A; Patananan AN; Tseng FG; Chang HY; Nagai M; Santra TS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells.
    Ramirez L; Herschkowitz JI; Wang J
    Sci Rep; 2016 Sep; 6():32505. PubMed ID: 27581736
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.