BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 2828093)

  • 1. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro.
    Wolff SP; Wang GM; Spector A
    Exp Eye Res; 1987 Dec; 45(6):777-89. PubMed ID: 2828093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pro-oxidant activation of ocular reductants. 2. Lens epithelial cell cytotoxicity of a dietary quinone is associated with a stable free radical formed with glutathione in vitro.
    Wolff SP; Spector A
    Exp Eye Res; 1987 Dec; 45(6):791-803. PubMed ID: 2828094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper catalyzed oxidation of ascorbate: chemical and ESR studies.
    Varma SD; Shen X; Lohman W
    Lens Eye Toxic Res; 1990; 7(1):49-66. PubMed ID: 2177351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins.
    Mouithys-Mickalad A; Deby C; Deby-Dupont G; Lamy M
    Biometals; 1998 Apr; 11(2):81-8. PubMed ID: 9542060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbic acid in human seminal plasma is protected from iron-mediated oxidation, but is potentially exposed to copper-induced damage.
    Menditto A; Pietraforte D; Minetti M
    Hum Reprod; 1997 Aug; 12(8):1699-705. PubMed ID: 9308796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitized formation of ascorbate radicals by riboflavin: an ESR study.
    Kim H; Kirschenbaum LJ; Rosenthal I; Riesz P
    Photochem Photobiol; 1993 May; 57(5):777-84. PubMed ID: 8393195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical.
    Dikalov SI; Vitek MP; Mason RP
    Free Radic Biol Med; 2004 Feb; 36(3):340-7. PubMed ID: 15036353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA
    Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pro-oxidant effects of interactions of ascorbate with photoexcited melanin fade away with aging of the retina.
    Rózanowski B; Burke J; Sarna T; Rózanowska M
    Photochem Photobiol; 2008; 84(3):658-70. PubMed ID: 18266818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic metals, ascorbate and free radicals: combinations to avoid.
    Buettner GR; Jurkiewicz BA
    Radiat Res; 1996 May; 145(5):532-41. PubMed ID: 8619018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidative modification of lens proteins.
    Garland D; Russell P; Zigler JS
    Basic Life Sci; 1988; 49():347-52. PubMed ID: 3250491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation by trace Cu2+ ions underlies the ability of ascorbate to induce vascular dysfunction in the rat perfused mesentery.
    Nelli S; Craig J; Martin W
    Eur J Pharmacol; 2009 Jul; 614(1-3):84-90. PubMed ID: 19394330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins.
    Ortwerth BJ; Chemoganskiy V; Mossine VV; Olesen PR
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3094-102. PubMed ID: 12824256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of retinal pigment epithelium melanin in photoinduced oxidation of ascorbate.
    Rózanowska M; Bober A; Burke JM; Sarna T
    Photochem Photobiol; 1997 Mar; 65(3):472-9. PubMed ID: 9077135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione and ascorbate reduction of the acetaminophen radical formed by peroxidase. Detection of the glutathione disulfide radical anion and the ascorbyl radical.
    Ramakrishna Rao DN; Fischer V; Mason RP
    J Biol Chem; 1990 Jan; 265(2):844-7. PubMed ID: 2153116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbic acid and the eye lens.
    Varma SD; Richards RD
    Ophthalmic Res; 1988; 20(3):164-73. PubMed ID: 3186190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of transition metal ion-catalysed ascorbate oxidation and lipid peroxidation by allopurinol and oxypurinol.
    Ko KM; Godin DV
    Biochem Pharmacol; 1990 Aug; 40(4):803-9. PubMed ID: 2117456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.