These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2828094)

  • 1. Pro-oxidant activation of ocular reductants. 2. Lens epithelial cell cytotoxicity of a dietary quinone is associated with a stable free radical formed with glutathione in vitro.
    Wolff SP; Spector A
    Exp Eye Res; 1987 Dec; 45(6):791-803. PubMed ID: 2828094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro.
    Wolff SP; Wang GM; Spector A
    Exp Eye Res; 1987 Dec; 45(6):777-89. PubMed ID: 2828093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA
    Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate-quinone interactions: electrochemical, free radical, and cytotoxic properties.
    Pethig R; Gascoyne PR; McLaughlin JA; Szent-Györgyi A
    Proc Natl Acad Sci U S A; 1983 Jan; 80(1):129-32. PubMed ID: 6296861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effects of anti-cataract drugs on free radicals formation in lenses].
    Fujiwara H; Tanaka N; Suzuki T
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1071-6. PubMed ID: 1662019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study.
    Verrax J; Delvaux M; Beghein N; Taper H; Gallez B; Buc Calderon P
    Free Radic Res; 2005 Jun; 39(6):649-57. PubMed ID: 16036343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymic- and thiol-mediated activation of halogen-substituted diaziridinylbenzoquinones: redox transitions of the semiquinone and semiquinone-thioether species.
    Goin J; Giulivi C; Butler J; Cadenas E
    Free Radic Biol Med; 1995 Mar; 18(3):525-36. PubMed ID: 9101243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of quinone cytotoxicity.
    O'Brien PJ
    Chem Biol Interact; 1991; 80(1):1-41. PubMed ID: 1913977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals.
    Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P
    Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium.
    Sasaki H; Giblin FJ; Winkler BS; Chakrapani B; Leverenz V; Shu CC
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1804-17. PubMed ID: 7635655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron spin resonance studies of the interaction of oxidoreductases with 2,6-dimethoxy-p-quinone and semiquinone.
    Gascoyne PR; Pethig R; Szent-Györgyi A
    Biochim Biophys Acta; 1987 Feb; 923(2):257-62. PubMed ID: 3028490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathionyl- and hydroxyl radical formation coupled to the redox transitions of 1,4-naphthoquinone bioreductive alkylating agents during glutathione two-electron reductive addition.
    Goin J; Gibson DD; McCay PB; Cadenas E
    Arch Biochem Biophys; 1991 Aug; 288(2):386-96. PubMed ID: 1654832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines.
    Powis G; Hodnett EM; Santone KS; See KL; Melder DC
    Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosinase-induced phenoxyl radicals of etoposide (VP-16): interaction with reductants in model systems, K562 leukemic cell and nuclear homogenates.
    Stoyanovsky D; Yalowich J; Gantchev T; Kagan V
    Free Radic Res Commun; 1993; 19(6):371-86. PubMed ID: 8168727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cataract induction by 1,2-naphthoquinone. I. Studies on the redox properties of bovine lens proteins.
    Kleber E; Kröner R; Elstner EF
    Z Naturforsch C J Biosci; 1991; 46(3-4):280-4. PubMed ID: 1878111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection from oxidative insult in glutathione depleted lens epithelial cells.
    Reddan JR; Giblin FJ; Kadry R; Leverenz VR; Pena JT; Dziedzic DC
    Exp Eye Res; 1999 Jan; 68(1):117-27. PubMed ID: 9986749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.