These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 2828094)
41. Election spin resonance studies of free radical formation and oxygen consumption of lens epithelium during ultraviolet exposure. Xu J; Sun C; Wu K; Shao J; Shan Q; Cong J; Zhang J Yan Ke Xue Bao; 1993 Mar; 9(1):15-8. PubMed ID: 8253176 [TBL] [Abstract][Full Text] [Related]
42. The influence of ascorbic acid on the free-radical metabolism of xenobiotics: the example of diaziquone. Gutierrez PL Drug Metab Rev; 1988; 19(3-4):319-43. PubMed ID: 3068033 [TBL] [Abstract][Full Text] [Related]
43. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system. Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455 [TBL] [Abstract][Full Text] [Related]
44. Protective effect of ascorbate against oxidative stress in the mouse lens. Hegde KR; Varma SD Biochim Biophys Acta; 2004 Jan; 1670(1):12-8. PubMed ID: 14729137 [TBL] [Abstract][Full Text] [Related]
45. Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy. Satake M; Dmochowska B; Nishikawa Y; Madaj J; Xue J; Guo Z; Reddy DV; Rinaldi PL; Monnier VM Invest Ophthalmol Vis Sci; 2003 May; 44(5):2047-58. PubMed ID: 12714643 [TBL] [Abstract][Full Text] [Related]
46. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287 [TBL] [Abstract][Full Text] [Related]
47. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium. Reddy VN; Giblin FJ; Lin LR; Chakrapani B Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992 [TBL] [Abstract][Full Text] [Related]
48. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Shang F; Taylor A Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):297-303. PubMed ID: 7717989 [TBL] [Abstract][Full Text] [Related]
49. Ascorbic acid and the eye with special reference to the lens. Varma SD Ann N Y Acad Sci; 1987; 498():280-306. PubMed ID: 3039891 [No Abstract] [Full Text] [Related]
50. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Shang F; Gong X; Palmer HJ; Nowell TR; Taylor A Exp Eye Res; 1997 Jan; 64(1):21-30. PubMed ID: 9093017 [TBL] [Abstract][Full Text] [Related]
51. Free radical damage and defense mechanisms in the ocular lens. Lerman S Lens Eye Toxic Res; 1992; 9(1):9-24. PubMed ID: 1318073 [No Abstract] [Full Text] [Related]
52. Mechanisms by which ascorbic acid increases ferritin levels in cultured lens epithelial cells. Goralska M; Harned J; Grimes AM; Fleisher LN; McGahan MC Exp Eye Res; 1997 Mar; 64(3):413-21. PubMed ID: 9196393 [TBL] [Abstract][Full Text] [Related]
53. Effect of cysteine, N-acetyl-L-cysteine and glutathione on cytotoxic activity of antioxidants. Satoh K; Sakagami H Anticancer Res; 1997; 17(3C):2175-9. PubMed ID: 9216683 [TBL] [Abstract][Full Text] [Related]
55. Detection of free radicals in UV-irradiated lens by spin trapping ESR. Murakami J; Kozuka Y; Okazaki M; Shiga T Lens Eye Toxic Res; 1992; 9(3-4):447-54. PubMed ID: 1338755 [TBL] [Abstract][Full Text] [Related]
56. Copper redox-dependent activation of 2-tert-butyl(1,4)hydroquinone: formation of reactive oxygen species and induction of oxidative DNA damage in isolated DNA and cultured rat hepatocytes. Li Y; Seacat A; Kuppusamy P; Zweier JL; Yager JD; Trush MA Mutat Res; 2002 Jul; 518(2):123-33. PubMed ID: 12113763 [TBL] [Abstract][Full Text] [Related]
57. Reversible reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione. Bobko AA; Kirilyuk IA; Grigor'ev IA; Zweier JL; Khramtsov VV Free Radic Biol Med; 2007 Feb; 42(3):404-12. PubMed ID: 17210453 [TBL] [Abstract][Full Text] [Related]
58. Reduction of protein radicals by GSH and ascorbate: potential biological significance. Gebicki JM; Nauser T; Domazou A; Steinmann D; Bounds PL; Koppenol WH Amino Acids; 2010 Nov; 39(5):1131-7. PubMed ID: 20532951 [TBL] [Abstract][Full Text] [Related]
59. Stimulation of porphyrinogen oxidation by mercuric ion. I. Evidence of free radical formation in the presence of thiols and hydrogen peroxide. Woods JS; Calas CA; Aicher LD; Robinson BH; Mailer C Mol Pharmacol; 1990 Aug; 38(2):253-60. PubMed ID: 2166905 [TBL] [Abstract][Full Text] [Related]
60. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase. Xing KY; Lou MF Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]