These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 2828105)
1. A quenched-flow study of a receptor-triggered second messenger response: cyclic AMP burst elicited by isoproterenol in C6 glioma cell membranes. Valeins H; Volker T; Viratelle O; Labouesse J FEBS Lett; 1988 Jan; 226(2):331-6. PubMed ID: 2828105 [TBL] [Abstract][Full Text] [Related]
2. Pre-steady state study of beta-adrenergic and purinergic receptor interaction in C6 cell membranes: undelayed balance between positive and negative coupling to adenylyl cyclase. Valeins H; Merle M; Labouesse J Mol Pharmacol; 1992 Dec; 42(6):1033-41. PubMed ID: 1336111 [TBL] [Abstract][Full Text] [Related]
3. Differences in the beta-adrenergic responsiveness between high and low passage rat glioma C6 cells. Mallorga P; Tallman JF; Fishman PH Biochim Biophys Acta; 1981 Dec; 678(2):221-9. PubMed ID: 6274415 [TBL] [Abstract][Full Text] [Related]
4. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis. Zaremba TG; Fishman PH Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420 [TBL] [Abstract][Full Text] [Related]
5. Reduction in beta-adrenergic response of cultured glioma cells following depletion of intracellular GTP. Franklin TJ; Twose PA Eur J Biochem; 1977 Jul; 77(1):113-7. PubMed ID: 198209 [TBL] [Abstract][Full Text] [Related]
6. The beta-adrenergic receptor system in human glioma-derived cell lines: the mode of phosphodiesterase induction and the macromolecules phosphorylated by cyclic AMP-dependent protein kinase. Shitara N; Reisine TD; Nakamura H; Fujiwara M; Smith BH; Kornblith PL; McKeever PE Brain Res; 1984 Mar; 296(1):67-74. PubMed ID: 6324958 [TBL] [Abstract][Full Text] [Related]
7. Beta-adrenergic stimulation of C6 glioma cells: effects of cAMP overproduction on cellular metabolites. A multinuclear NMR study. Pianet I; Canioni P; Labouesse J; Merle M Eur J Biochem; 1992 Oct; 209(2):707-15. PubMed ID: 1330556 [TBL] [Abstract][Full Text] [Related]
8. Identification of beta-adrenergic sensitive adenylate cyclase in rat thoracic duct. Amenta F; De Rossi M; Fruschelli C; Gerli R J Auton Nerv Syst; 1988 Apr; 22(3):189-92. PubMed ID: 2843587 [TBL] [Abstract][Full Text] [Related]
10. Exfoliation of the beta-adrenergic receptor and the regulatory components of adenylate cyclase by cultured rat glioma C6 cells. Kassis S; Lauter CJ; Stojanov M; Salem N Biochim Biophys Acta; 1986 May; 886(3):474-82. PubMed ID: 2871868 [TBL] [Abstract][Full Text] [Related]
11. Characterization of high affinity GTPase activity correlated to beta-adrenergic receptor stimulation of adenylyl cyclase in rat parotid membranes. Hiramatsu Y; Ambudkar IS; Baum BJ Biochim Biophys Acta; 1991 May; 1092(3):391-6. PubMed ID: 1646644 [TBL] [Abstract][Full Text] [Related]
12. A hormone-independent rise of adenosine 3',5'-monophosphate desensitizes coupling of beta-adrenergic receptors to adenylate cyclase in rat glioma C6-cells. Koschel K Eur J Biochem; 1980; 108(1):163-9. PubMed ID: 6157529 [TBL] [Abstract][Full Text] [Related]
13. Role of beta-adrenergic receptors in catecholamine-induced desensitization of adenylate cyclase in human astrocytoma cells. Johnson GL; Wolfe BB; Harden TK; Molinoff PB; Perkins JP J Biol Chem; 1978 Mar; 253(5):1472-80. PubMed ID: 203594 [No Abstract] [Full Text] [Related]
14. Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions. Levi G; Patrizio M; Bernardo A; Petrucci TC; Agresti C Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1541-5. PubMed ID: 8381971 [TBL] [Abstract][Full Text] [Related]
15. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C. Debernardi MA; Munshi R; Brooker G Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803 [TBL] [Abstract][Full Text] [Related]
16. Receptor-associated changes of the catecholamine-sensitive adenylate cyclase in glioma cells doubly transformed with Moloney sarcoma virus. Higashida H; Miki N; Tanaka T; Kato K; Nakano T; Nagatsu T; Kano-Tanaka K J Cell Physiol; 1982 Feb; 110(2):107-13. PubMed ID: 6279681 [TBL] [Abstract][Full Text] [Related]
17. Cell cycle changes in the adenylate cyclase of C6 glioma cells. Howard RF; Sheppard JR J Cell Biol; 1981 Jul; 90(1):169-75. PubMed ID: 6265474 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a beta-adrenergic receptor in porcine trachealis muscle. Popovich KJ; Hiller C; Hough A; Norris JS; Cornett LE Am J Physiol; 1984 Nov; 247(5 Pt 1):C342-9. PubMed ID: 6093567 [TBL] [Abstract][Full Text] [Related]
19. Beta-adrenergic receptor regulation of a cyclic AMP phosphodiesterase in C6 glioma cells. Schwartz JP; Onali P Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():195-203. PubMed ID: 6326524 [No Abstract] [Full Text] [Related]