These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 2828112)

  • 1. How relevant is the reoxidation of ferrocytochrome c by hydrogen peroxide when determining superoxide anion production?
    Turrens JF; McCord JM
    FEBS Lett; 1988 Jan; 227(1):43-6. PubMed ID: 2828112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of reduced cytochrome c by hydrogen peroxide. Implications for superoxide assays.
    Vandewalle PL; Petersen NO
    FEBS Lett; 1987 Jan; 210(2):195-8. PubMed ID: 3025026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ferrocytochrome C oxidation by hydrogen peroxide.
    Kownatzki E; Uhrich S; Bethke P
    Agents Actions; 1991 Nov; 34(3-4):393-6. PubMed ID: 1667246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox state of cytochrome c in the presence of the 6-hydroxydopamine/oxygen couple: oscillations dependent on the presence of hydrogen peroxide or superoxide.
    Davison AJ; Gee P
    Arch Biochem Biophys; 1984 Sep; 233(2):761-71. PubMed ID: 6091557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation.
    Fong KL; McCay PB; Poyer JL
    Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reaction of ferrous EDTA with hydrogen peroxide: evidence against hydroxyl radical formation.
    Koppenol WH
    J Free Radic Biol Med; 1985; 1(4):281-5. PubMed ID: 3013978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus to oxidative killing.
    Dongari AI; Miyasaki KT
    Oral Microbiol Immunol; 1991 Dec; 6(6):363-72. PubMed ID: 1668250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of ferricytochrome C may underestimate superoxide production by monocytes.
    Arthur MJ; Kowalski-Saunders P; Gurney S; Tolcher R; Bull FG; Wright R
    J Immunol Methods; 1987 Apr; 98(1):63-9. PubMed ID: 3031166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of flavonols on the generation of superoxide anion radicals by xanthine oxidase and stimulated neutrophils.
    Selloum L; Reichl S; Müller M; Sebihi L; Arnhold J
    Arch Biochem Biophys; 2001 Nov; 395(1):49-56. PubMed ID: 11673865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative identification of superoxide anion as a negative inotropic species.
    Schrier GM; Hess ML
    Am J Physiol; 1988 Jul; 255(1 Pt 2):H138-43. PubMed ID: 2839994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide.
    Baldwin DA; Jenny ER; Aisen P
    J Biol Chem; 1984 Nov; 259(21):13391-4. PubMed ID: 6092375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals.
    Payá M; Halliwell B; Hoult JR
    Biochem Pharmacol; 1992 Jul; 44(2):205-14. PubMed ID: 1322662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics.
    Bijloo GJ; van der Goot H; Bast A; Timmerman H
    J Inorg Biochem; 1990 Nov; 40(3):237-44. PubMed ID: 1963439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase.
    Zhang C; Zhang G; Liao Y; Gong D
    Food Chem; 2017 Apr; 221():1569-1577. PubMed ID: 27979130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products.
    Kaur H; Halliwell B
    Chem Biol Interact; 1990; 73(2-3):235-47. PubMed ID: 2155712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production.
    Radi R; Tan S; Prodanov E; Evans RA; Parks DA
    Biochim Biophys Acta; 1992 Jul; 1122(2):178-82. PubMed ID: 1322703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.