These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 28281211)
1. Bayesian molecular design with a chemical language model. Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211 [TBL] [Abstract][Full Text] [Related]
2. Toward efficient generation, correction, and properties control of unique drug-like structures. Druchok M; Yarish D; Gurbych O; Maksymenko M J Comput Chem; 2021 Apr; 42(11):746-760. PubMed ID: 33583075 [TBL] [Abstract][Full Text] [Related]
3. Bayesian Algorithm for Retrosynthesis. Guo Z; Wu S; Ohno M; Yoshida R J Chem Inf Model; 2020 Oct; 60(10):4474-4486. PubMed ID: 32975943 [TBL] [Abstract][Full Text] [Related]
4. Deep reinforcement learning for de novo drug design. Popova M; Isayev O; Tropsha A Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984 [TBL] [Abstract][Full Text] [Related]
5. MolGPT: Molecular Generation Using a Transformer-Decoder Model. Bagal V; Aggarwal R; Vinod PK; Priyakumar UD J Chem Inf Model; 2022 May; 62(9):2064-2076. PubMed ID: 34694798 [TBL] [Abstract][Full Text] [Related]
6. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization. Podlewska S; Czarnecki WM; Kafel R; Bojarski AJ J Chem Inf Model; 2017 Feb; 57(2):133-147. PubMed ID: 28158942 [TBL] [Abstract][Full Text] [Related]
7. Conditional Molecular Design with Deep Generative Models. Kang S; Cho K J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587 [TBL] [Abstract][Full Text] [Related]
9. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Tian S; Wang J; Li Y; Xu X; Hou T Mol Pharm; 2012 Oct; 9(10):2875-86. PubMed ID: 22738405 [TBL] [Abstract][Full Text] [Related]
10. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques. Tajimi T; Wakui N; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y BMC Bioinformatics; 2018 Dec; 19(Suppl 19):527. PubMed ID: 30598072 [TBL] [Abstract][Full Text] [Related]
11. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts. Cui X; Liu J; Zhang J; Wu Q; Li X J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880 [TBL] [Abstract][Full Text] [Related]
12. Predicting DPP-IV inhibitors with machine learning approaches. Cai J; Li C; Liu Z; Du J; Ye J; Gu Q; Xu J J Comput Aided Mol Des; 2017 Apr; 31(4):393-402. PubMed ID: 28155089 [TBL] [Abstract][Full Text] [Related]
13. Iterative Screening Methods for Identification of Chemical Compounds with Specific Values of Various Properties. Miyao T; Funatsu K J Chem Inf Model; 2019 Jun; 59(6):2626-2641. PubMed ID: 31058504 [TBL] [Abstract][Full Text] [Related]
14. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Veselinović AM; Veselinović JB; Toropov AA; Toropova AP; Nikolić GM Int J Pharm; 2015 Nov; 495(1):404-409. PubMed ID: 26320546 [TBL] [Abstract][Full Text] [Related]
15. Bayesian optimization for computationally extensive probability distributions. Tamura R; Hukushima K PLoS One; 2018; 13(3):e0193785. PubMed ID: 29505596 [TBL] [Abstract][Full Text] [Related]
16. DrugSynthMC: An Atom-Based Generation of Drug-like Molecules with Monte Carlo Search. Roucairol M; Georgiou A; Cazenave T; Prischi F; Pardo OE J Chem Inf Model; 2024 Sep; 64(18):7097-7107. PubMed ID: 39249497 [TBL] [Abstract][Full Text] [Related]
17. Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via Attention. Kim H; Na J; Lee WB J Chem Inf Model; 2021 Dec; 61(12):5804-5814. PubMed ID: 34855384 [TBL] [Abstract][Full Text] [Related]
18. V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization. Choi J; Lee J Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769065 [TBL] [Abstract][Full Text] [Related]
19. Building Quantitative Structure-Activity Relationship Models Using Bayesian Additive Regression Trees. Feng D; Svetnik V; Liaw A; Pratola M; Sheridan RP J Chem Inf Model; 2019 Jun; 59(6):2642-2655. PubMed ID: 30998343 [TBL] [Abstract][Full Text] [Related]