These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28281211)

  • 1. Bayesian molecular design with a chemical language model.
    Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R
    J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward efficient generation, correction, and properties control of unique drug-like structures.
    Druchok M; Yarish D; Gurbych O; Maksymenko M
    J Comput Chem; 2021 Apr; 42(11):746-760. PubMed ID: 33583075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Algorithm for Retrosynthesis.
    Guo Z; Wu S; Ohno M; Yoshida R
    J Chem Inf Model; 2020 Oct; 60(10):4474-4486. PubMed ID: 32975943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MolGPT: Molecular Generation Using a Transformer-Decoder Model.
    Bagal V; Aggarwal R; Vinod PK; Priyakumar UD
    J Chem Inf Model; 2022 May; 62(9):2064-2076. PubMed ID: 34694798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.
    Podlewska S; Czarnecki WM; Kafel R; Bojarski AJ
    J Chem Inf Model; 2017 Feb; 57(2):133-147. PubMed ID: 28158942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning to Generate
    Colby SM; Nuñez JR; Hodas NO; Corley CD; Renslow RR
    Anal Chem; 2020 Jan; 92(2):1720-1729. PubMed ID: 31661259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches.
    Tian S; Wang J; Li Y; Xu X; Hou T
    Mol Pharm; 2012 Oct; 9(10):2875-86. PubMed ID: 22738405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques.
    Tajimi T; Wakui N; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):527. PubMed ID: 30598072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting DPP-IV inhibitors with machine learning approaches.
    Cai J; Li C; Liu Z; Du J; Ye J; Gu Q; Xu J
    J Comput Aided Mol Des; 2017 Apr; 31(4):393-402. PubMed ID: 28155089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative Screening Methods for Identification of Chemical Compounds with Specific Values of Various Properties.
    Miyao T; Funatsu K
    J Chem Inf Model; 2019 Jun; 59(6):2626-2641. PubMed ID: 31058504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method.
    Veselinović AM; Veselinović JB; Toropov AA; Toropova AP; Nikolić GM
    Int J Pharm; 2015 Nov; 495(1):404-409. PubMed ID: 26320546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian optimization for computationally extensive probability distributions.
    Tamura R; Hukushima K
    PLoS One; 2018; 13(3):e0193785. PubMed ID: 29505596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via Attention.
    Kim H; Na J; Lee WB
    J Chem Inf Model; 2021 Dec; 61(12):5804-5814. PubMed ID: 34855384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization.
    Choi J; Lee J
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building Quantitative Structure-Activity Relationship Models Using Bayesian Additive Regression Trees.
    Feng D; Svetnik V; Liaw A; Pratola M; Sheridan RP
    J Chem Inf Model; 2019 Jun; 59(6):2642-2655. PubMed ID: 30998343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-Geometry Dependency of Molecular Structures: A Multistep Machine Learning Approach.
    Moharreri E; Pardakhti M; Srivastava R; Suib SL
    ACS Comb Sci; 2019 Sep; 21(9):614-621. PubMed ID: 31390176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Sep; 21(9):485-98. PubMed ID: 17632688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.