These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 28281211)

  • 21. PHAISTOS: a framework for Markov chain Monte Carlo simulation and inference of protein structure.
    Boomsma W; Frellsen J; Harder T; Bottaro S; Johansson KE; Tian P; Stovgaard K; Andreetta C; Olsson S; Valentin JB; Antonov LD; Christensen AS; Borg M; Jensen JH; Lindorff-Larsen K; Ferkinghoff-Borg J; Hamelryck T
    J Comput Chem; 2013 Jul; 34(19):1697-705. PubMed ID: 23619610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software.
    Achary PG
    SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning models for lipophilicity and their domain of applicability.
    Schroeter T; Schwaighofer A; Mika S; Laak AT; Suelzle D; Ganzer U; Heinrich N; Müller KR
    Mol Pharm; 2007; 4(4):524-38. PubMed ID: 17637064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.
    Perryman AL; Stratton TP; Ekins S; Freundlich JS
    Pharm Res; 2016 Feb; 33(2):433-49. PubMed ID: 26415647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melting point prediction of organic molecules by deciphering the chemical structure into a natural language.
    Mi W; Chen H; Zhu DA; Zhang T; Qian F
    Chem Commun (Camb); 2021 Mar; 57(21):2633-2636. PubMed ID: 33587048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QSAR classification model for antibacterial compounds and its use in virtual screening.
    Singh N; Chaudhury S; Liu R; AbdulHameed MD; Tawa G; Wallqvist A
    J Chem Inf Model; 2012 Oct; 52(10):2559-69. PubMed ID: 23013546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adversarial Threshold Neural Computer for Molecular de Novo Design.
    Putin E; Asadulaev A; Vanhaelen Q; Ivanenkov Y; Aladinskaya AV; Aliper A; Zhavoronkov A
    Mol Pharm; 2018 Oct; 15(10):4386-4397. PubMed ID: 29569445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13.
    Blum LC; Reymond JL
    J Am Chem Soc; 2009 Jul; 131(25):8732-3. PubMed ID: 19505099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The rational computer-aided design of new drugs: a review of the methods].
    Ivanov AS; Liul'kin IuA; Skvortsov VS; Rumiantsev AB
    Vestn Ross Akad Med Nauk; 1995; (12):51-6. PubMed ID: 8664605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The application of in silico drug-likeness predictions in pharmaceutical research.
    Tian S; Wang J; Li Y; Li D; Xu L; Hou T
    Adv Drug Deliv Rev; 2015 Jun; 86():2-10. PubMed ID: 25666163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I.
    Ekins S; Godbole AA; Kéri G; Orfi L; Pato J; Bhat RS; Verma R; Bradley EK; Nagaraja V
    Tuberculosis (Edinb); 2017 Mar; 103():52-60. PubMed ID: 28237034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Naïve Bayesian Models for Vero Cell Cytotoxicity.
    Perryman AL; Patel JS; Russo R; Singleton E; Connell N; Ekins S; Freundlich JS
    Pharm Res; 2018 Jun; 35(9):170. PubMed ID: 29959603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors.
    Chandra S; Pandey J; Tamrakar AK; Siddiqi MI
    J Mol Graph Model; 2017 Jan; 71():242-256. PubMed ID: 28006676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modern machine learning for tackling inverse problems in chemistry: molecular design to realization.
    Sridharan B; Goel M; Priyakumar UD
    Chem Commun (Camb); 2022 Apr; 58(35):5316-5331. PubMed ID: 35416193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmaceutical structure montages as catalysts for design and discovery.
    Njarðarson JT
    Future Med Chem; 2012 May; 4(8):951-4. PubMed ID: 22650237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model.
    Chen G; Tao L; Li Y
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34200505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VenomPred: A Machine Learning Based Platform for Molecular Toxicity Predictions.
    Galati S; Di Stefano M; Martinelli E; Macchia M; Martinelli A; Poli G; Tuccinardi T
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De-Risking Early-Stage Drug Development With a Bespoke Lattice Energy Predictive Model: A Materials Science Informatics Approach to Address Challenges Associated With a Diverse Chemical Space.
    Lai T; Pencheva K; Chow E; Docherty R
    J Pharm Sci; 2019 Oct; 108(10):3176-3186. PubMed ID: 31226427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.