BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 28281240)

  • 1. Translational Challenges in Cardiovascular Tissue Engineering.
    Emmert MY; Fioretta ES; Hoerstrup SP
    J Cardiovasc Transl Res; 2017 Apr; 10(2):139-149. PubMed ID: 28281240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds.
    Muylaert DE; Fledderus JO; Bouten CV; Dankers PY; Verhaar MC
    Heart; 2014 Dec; 100(23):1825-30. PubMed ID: 25053725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of the Art: Tissue Engineering in Congenital Heart Surgery.
    Boyd R; Parisi F; Kalfa D
    Semin Thorac Cardiovasc Surg; 2019; 31(4):807-817. PubMed ID: 31176798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits.
    Manavitehrani I; Ebrahimi P; Yang I; Daly S; Schindeler A; Saxena A; Little DG; Fletcher DF; Dehghani F; Winlaw DS
    Cardiovasc Eng Technol; 2019 Jun; 10(2):205-215. PubMed ID: 30767113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity.
    Fioretta ES; Motta SE; Lintas V; Loerakker S; Parker KK; Baaijens FPT; Falk V; Hoerstrup SP; Emmert MY
    Nat Rev Cardiol; 2021 Feb; 18(2):92-116. PubMed ID: 32908285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model.
    Emmert MY; Schmitt BA; Loerakker S; Sanders B; Spriestersbach H; Fioretta ES; Bruder L; Brakmann K; Motta SE; Lintas V; Dijkman PE; Frese L; Berger F; Baaijens FPT; Hoerstrup SP
    Sci Transl Med; 2018 May; 10(440):. PubMed ID: 29743347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of heart valves: advances and current challenges.
    Mol A; Smits AI; Bouten CV; Baaijens FP
    Expert Rev Med Devices; 2009 May; 6(3):259-75. PubMed ID: 19419284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcatheter valve implantation for right atrium-to-right ventricle conduit obstruction or regurgitation after modified Björk-fontan procedure.
    Shah AH; Horlick EM; Eicken A; Asnes JD; Bocks ML; Boudjemline Y; Cabalka AK; Fagan TE; Schubert S; Mahadevan VS; Dvir D; Osten M; McElhinney DB
    Catheter Cardiovasc Interv; 2017 Feb; 89(2):298-305. PubMed ID: 27465501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Tissue engineering of heart valves].
    Akhyari P; Minol P; Assmann A; Barth M; Kamiya H; Lichtenberg A
    Chirurg; 2011 Apr; 82(4):311-8. PubMed ID: 21424291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular grafts and valves that animate, made from decellularized biologically-engineered tissue tubes.
    Syedain ZH; Maciver R; Tranquillo RT
    J Cardiovasc Surg (Torino); 2020 Oct; 61(5):577-585. PubMed ID: 32964902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology, Clinicopathologic Correlations, and Mechanisms in Heart Valve Health and Disease.
    Schoen FJ
    Cardiovasc Eng Technol; 2018 Jun; 9(2):126-140. PubMed ID: 27502286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Heart valve and myocardial tissue engineering].
    Cebotari S; Tudorache I; Schilling T; Haverich A
    Herz; 2010 Aug; 35(5):334-41. PubMed ID: 20631970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular tissue engineering: From basic science to clinical application.
    Fioretta ES; von Boehmer L; Motta SE; Lintas V; Hoerstrup SP; Emmert MY
    Exp Gerontol; 2019 Mar; 117():1-12. PubMed ID: 29604404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Off-the-Shelf Tissue-Engineered Sinus Valve for Transcatheter Pulmonary Valve Replacement: a Proof-of-Concept Study.
    Motta SE; Fioretta ES; Dijkman PE; Lintas V; Behr L; Hoerstrup SP; Emmert MY
    J Cardiovasc Transl Res; 2018 Jun; 11(3):182-191. PubMed ID: 29560553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineering strategies for polymeric scaffold for tissue engineering an aortic heart valve: an update.
    Morsi YS
    Int J Artif Organs; 2014 Sep; 37(9):651-67. PubMed ID: 25262629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience and intermediate-term results using the Contegra heterograft for right ventricular outflow reconstruction in adults.
    Niclauss L; Delay D; Hurni M; von Segesser LK
    Interact Cardiovasc Thorac Surg; 2009 Oct; 9(4):667-71. PubMed ID: 19638357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute.
    Breuer CK; Mettler BA; Anthony T; Sales VL; Schoen FJ; Mayer JE
    Tissue Eng; 2004; 10(11-12):1725-36. PubMed ID: 15684681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decellularization and characterization of camel pericardium as a new scaffold for tissue engineering and regenerative medicine.
    Jafari Sorkhdehi MM; Doostmohammadi A; Talebi A; Alizadeh A
    Asian Cardiovasc Thorac Ann; 2024 May; 32(4):194-199. PubMed ID: 38767039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions.
    Motta SE; Lintas V; Fioretta ES; Hoerstrup SP; Emmert MY
    Expert Rev Med Devices; 2018 Jan; 15(1):35-45. PubMed ID: 29257706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-engineered heart valve scaffolds.
    Dohmen PM; Konertz W
    Ann Thorac Cardiovasc Surg; 2009 Dec; 15(6):362-7. PubMed ID: 20081743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.