These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28281264)

  • 21. Protein quantification using resonance energy transfer between donor nanoparticles and acceptor quantum dots.
    Härmä H; Pihlasalo S; Cywinski PJ; Mikkonen P; Hammann T; Löhmannsröben HG; Hänninen P
    Anal Chem; 2013 Mar; 85(5):2921-6. PubMed ID: 23391291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors.
    Vannoy CH; Chong L; Le C; Krull UJ
    Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format.
    Petryayeva E; Algar WR; Krull UJ
    Langmuir; 2013 Jan; 29(3):977-87. PubMed ID: 23298406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules.
    Algar WR; Krull UJ
    Anal Bioanal Chem; 2008 Jul; 391(5):1609-18. PubMed ID: 17987281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays.
    Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared-emitting NaYF
    Gao N; Ling B; Gao Z; Wang L; Chen H
    Anal Bioanal Chem; 2017 Apr; 409(10):2675-2683. PubMed ID: 28124754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-phase supports for the in situ assembly of quantum dot-FRET hybridization assays in channel microfluidics.
    Tavares AJ; Noor MO; Uddayasankar U; Krull UJ; Vannoy CH
    Methods Mol Biol; 2014; 1199():241-55. PubMed ID: 25103813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors.
    Zhou F; Noor MO; Krull UJ
    Anal Chem; 2014 Mar; 86(5):2719-26. PubMed ID: 24506311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application.
    Stanisavljevic M; Krizkova S; Vaculovicova M; Kizek R; Adam V
    Biosens Bioelectron; 2015 Dec; 74():562-74. PubMed ID: 26188679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Tavares AJ; Noor MO; Vannoy CH; Algar WR; Krull UJ
    Anal Chem; 2012 Jan; 84(1):312-9. PubMed ID: 22136151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-chip detection of protein glycosylation based on energy transfer between nanoparticles.
    Kim YP; Park S; Oh E; Oh YH; Kim HS
    Biosens Bioelectron; 2009 Jan; 24(5):1189-94. PubMed ID: 18722763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing.
    Freeman R; Girsh J; Willner I
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2815-34. PubMed ID: 23425022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.
    Algar WR; Krull UJ
    Anal Bioanal Chem; 2010 Nov; 398(6):2439-49. PubMed ID: 20512564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms.
    Petryayeva E; Algar WR
    Anal Chem; 2013 Sep; 85(18):8817-25. PubMed ID: 23980758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots.
    Wu P; Hou X; Xu JJ; Chen HY
    Nanoscale; 2016 Apr; 8(16):8427-42. PubMed ID: 27056088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanoparticle-quantum dot-polystyrene microspheres as fluorescence resonance energy transfer probes for bioassays.
    Quach AD; Crivat G; Tarr MA; Rosenzweig Z
    J Am Chem Soc; 2011 Feb; 133(7):2028-30. PubMed ID: 21280652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.
    Shahmuradyan A; Krull UJ
    Anal Chem; 2016 Mar; 88(6):3186-93. PubMed ID: 26866462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission.
    Pei H; Zheng Y; Kong R; Xia L; Qu F
    Biosens Bioelectron; 2016 Nov; 85():76-82. PubMed ID: 27155119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.