These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 28281349)

  • 1. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating and Comparing Flexure Strength of Dental Models Printed Using Fused Deposition Modelling, Digital Light Processing, and Stereolithography Apparatus Printers.
    Atwal N; Bhatnagar D
    Cureus; 2024 Feb; 16(2):e54312. PubMed ID: 38496206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques.
    Kim SY; Shin YS; Jung HD; Hwang CJ; Baik HS; Cha JY
    Am J Orthod Dentofacial Orthop; 2018 Jan; 153(1):144-153. PubMed ID: 29287640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology.
    Rouzé l'Alzit F; Cade R; Naveau A; Babilotte J; Meglioli M; Catros S
    J Dent; 2022 Feb; 117():103909. PubMed ID: 34852291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy evaluation of complete-arch models manufactured by three different 3D printing technologies: a three-dimensional analysis.
    Emir F; Ayyildiz S
    J Prosthodont Res; 2021 Aug; 65(3):365-370. PubMed ID: 33177305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates.
    Chen L; Lin WS; Polido WD; Eckert GJ; Morton D
    J Prosthet Dent; 2019 Sep; 122(3):309-314. PubMed ID: 30948293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
    Gong H; Bickham BP; Woolley AT; Nordin GP
    Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimensional accuracy and surface characteristics of 3D-printed dental casts.
    Park JM; Jeon J; Koak JY; Kim SK; Heo SJ
    J Prosthet Dent; 2021 Sep; 126(3):427-437. PubMed ID: 32958301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Impact of the Fabrication Method on the Performance of 3D Printed Mixers.
    Zeraatkar M; Filippini D; Percoco G
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31052338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications.
    Salentijn GI; Oomen PE; Grajewski M; Verpoorte E
    Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.