These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28281714)

  • 1. Iridacycles for hydrogenation and dehydrogenation reactions.
    Wang C; Xiao J
    Chem Commun (Camb); 2017 Mar; 53(24):3399-3411. PubMed ID: 28281714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Development in the Synthesis and Catalytic Application of Iridacycles.
    Chen Z; Kacmaz A; Xiao J
    Chem Rec; 2021 Jun; 21(6):1506-1534. PubMed ID: 33939250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenacycles and Iridacycles as Transfer Hydrogenation Catalysts.
    Ritleng V; de Vries JG
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes.
    Campos J; Sharninghausen LS; Manas MG; Crabtree RH
    Inorg Chem; 2015 Jun; 54(11):5079-84. PubMed ID: 25615426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer Hydrogenation in Water.
    Wu X; Wang C; Xiao J
    Chem Rec; 2016 Dec; 16(6):2768-2782. PubMed ID: 27748019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation.
    Leng Y; Du S; Feng G; Sang X; Jiang P; Li H; Wang D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):474-483. PubMed ID: 31802662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pincer-Type Complexes for Catalytic (De)Hydrogenation and Transfer (De)Hydrogenation Reactions: Recent Progress.
    Werkmeister S; Neumann J; Junge K; Beller M
    Chemistry; 2015 Aug; 21(35):12226-50. PubMed ID: 26179375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Proton-Responsive Catalysts.
    Wang L; Kanega R; Kawanami H; Himeda Y
    Chem Rec; 2017 Nov; 17(11):1071-1094. PubMed ID: 28650571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral cyclometalated iridium complexes for asymmetric reduction reactions.
    Smith J; Kacmaz A; Wang C; Villa-Marcos B; Xiao J
    Org Biomol Chem; 2021 Jan; 19(1):279-284. PubMed ID: 33242054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insights and Computational Design of Transition-Metal Catalysts for Hydrogenation and Dehydrogenation Reactions.
    Chen X; Yang X
    Chem Rec; 2016 Oct; 16(5):2364-2378. PubMed ID: 27500503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A leap forward in iridium-NHC catalysis: new horizons and mechanistic insights.
    Iglesias M; Oro LA
    Chem Soc Rev; 2018 Apr; 47(8):2772-2808. PubMed ID: 29557434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.
    Mellmann D; Sponholz P; Junge H; Beller M
    Chem Soc Rev; 2016 Jul; 45(14):3954-88. PubMed ID: 27119123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
    Sordakis K; Tang C; Vogt LK; Junge H; Dyson PJ; Beller M; Laurenczy G
    Chem Rev; 2018 Jan; 118(2):372-433. PubMed ID: 28985048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium Complexes for Catalytic Dehydrogenation of Hydrazine and Transfer Hydrogenation Reactions.
    Awasthi MK; Tyagi D; Patra S; Rai RK; Mobin SM; Singh SK
    Chem Asian J; 2018 Jun; 13(11):1424-1431. PubMed ID: 29630773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts.
    Kallmeier F; Kempe R
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):46-60. PubMed ID: 29065245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-Anchored Bifunctional Pincer Catalysts for Chemoselective Transfer Hydrogenation and Related Reactions.
    Mujahed S; Valentini F; Cohen S; Vaccaro L; Gelman D
    ChemSusChem; 2019 Oct; 12(20):4693-4699. PubMed ID: 31368199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Group VI Metal-Catalyzed Homogeneous Hydrogenation and Dehydrogenation Reactions.
    Singh T; Atreya V; Jalwal S; Anand A; Chakraborty S
    Chem Asian J; 2023 Dec; 18(23):e202300758. PubMed ID: 37815164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.