BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 2828185)

  • 1. Plasmid construction by homologous recombination in yeast.
    Ma H; Kunes S; Schatz PJ; Botstein D
    Gene; 1987; 58(2-3):201-16. PubMed ID: 2828185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recombinant plasmids carrying multiple markers: isolation during yeast co-transformation].
    Kozhina TN; Chepurnaia OV; Fedorova IV
    Mol Gen Mikrobiol Virusol; 1985 May; (5):31-6. PubMed ID: 3916226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae.
    Sikorski RS; Hieter P
    Genetics; 1989 May; 122(1):19-27. PubMed ID: 2659436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional yeast high-copy-number shuttle vectors.
    Christianson TW; Sikorski RS; Dante M; Shero JH; Hieter P
    Gene; 1992 Jan; 110(1):119-22. PubMed ID: 1544568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted DNA integration within different functional gene domains in yeast reveals ORF sequences as recombinational cold-spots.
    Gjuracic K; Pivetta E; Bruschi CV
    Mol Genet Genomics; 2004 May; 271(4):437-46. PubMed ID: 15048565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. YHp as a highly stable, hyper-copy, hyper-expression plasmid constructed using a full 2-μm circle sequence in cir
    Misumi Y; Nishioka S; Fukuda A; Uemura T; Nakamura M; Hoshida H; Akada R
    Yeast; 2019 May; 36(5):249-257. PubMed ID: 30537227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A model system for the study of repair of DNA double-strand breaks in Saccharomyces cerevisiae].
    Glazunov AV; Glazer VM; Perera DR; Boreĭko AV
    Mol Gen Mikrobiol Virusol; 1987 Aug; (8):19-25. PubMed ID: 2825006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of yeast with linearized plasmid DNA. Formation of inverted dimers and recombinant plasmid products.
    Kunes S; Botstein D; Fox MS
    J Mol Biol; 1985 Aug; 184(3):375-87. PubMed ID: 3900413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of non-homology between recombining DNA sequences on double-strand break repair in Saccharomyces cerevisiae.
    Glasunov A; Frankenberg-Schwager M; Frankenberg D
    Mol Gen Genet; 1995 Apr; 247(1):55-60. PubMed ID: 7715604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of the LEU2 gene of Saccharomyces cerevisiae by in vivo recombination.
    Valinger R; Braus G; Niederberger P; Künzler M; Paravicini G; Schmidheini T; Hütter R
    Arch Microbiol; 1989; 152(3):263-8. PubMed ID: 2673120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites.
    Gietz RD; Sugino A
    Gene; 1988 Dec; 74(2):527-34. PubMed ID: 3073106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of interplasmid recombination to generate stable selectable markers for yeast transformation: application to studies of actin gene control.
    Hubberstey AV; Wildeman AG
    Genome; 1990 Oct; 33(5):696-706. PubMed ID: 2262141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae.
    Ugolini S; Tosato V; Bruschi CV
    Plasmid; 2002 Mar; 47(2):94-107. PubMed ID: 11982331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid multimerization is dependent on RAD52 activity in Saccharomyces cerevisiae.
    Harashima S; Shimada Y; Nakade S; Oshima Y
    Mol Gen Genet; 1989 Nov; 219(3):495-8. PubMed ID: 2695827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombination-mediated PCR-directed plasmid construction in vivo in yeast.
    Oldenburg KR; Vo KT; Michaelis S; Paddon C
    Nucleic Acids Res; 1997 Jan; 25(2):451-2. PubMed ID: 9016579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step gene replacement in yeast by cotransformation.
    Rudolph H; Koenig-Rauseo I; Hinnen A
    Gene; 1985; 36(1-2):87-95. PubMed ID: 2998940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure recombinational analysis of cloned genes using yeast transformation.
    Kunes S; Ma H; Overbye K; Fox MS; Botstein D
    Genetics; 1987 Jan; 115(1):73-81. PubMed ID: 3549444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcription map of a yeast centromere plasmid: unexpected transcripts and altered gene expression.
    Marczynski GT; Jaehning JA
    Nucleic Acids Res; 1985 Dec; 13(23):8487-506. PubMed ID: 3909105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo cloning by homologous recombination in yeast using a two-plasmid-based system.
    Degryse E; Dumas B; Dietrich M; Laruelle L; Achstetter T
    Yeast; 1995 Jun; 11(7):629-40. PubMed ID: 7483836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.