BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28281884)

  • 1. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporary hydraulic barriers using organic gel for enhanced aquifer remediation during groundwater flushing: Bench-scale experiments.
    Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2023 Apr; 255():104143. PubMed ID: 36773413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.
    Choi JK; Kim H; Kwon H; Annable MD
    J Contam Hydrol; 2018 Mar; 210():42-49. PubMed ID: 29502850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.
    Zhang C; Werth CJ; Webb AG
    J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.
    Kim J; Kim H; Annable MD
    J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation.
    Babaei M; Copty NK
    J Contam Hydrol; 2019 Feb; 221():69-81. PubMed ID: 30691860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations.
    Ramezanzadeh M; Aminnaji M; Rezanezhad F; Ghazanfari MH; Babaei M
    Chemosphere; 2022 Feb; 289():133177. PubMed ID: 34890610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.
    Ouyan Y; Cho JS; Mansell RS
    Water Res; 2002 Jan; 36(1):33-40. PubMed ID: 11766810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.
    Zhu J; Sun D
    J Contam Hydrol; 2016 Sep; 192():158-164. PubMed ID: 27500747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.
    Cho MY; Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.
    Saenton S; Illangasekare TH; Soga K; Saba TA
    J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments.
    Zhou Y; Cardiff M
    J Contam Hydrol; 2017 May; 200():24-34. PubMed ID: 28366611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol.
    Ramsburg CA; Pennell KD
    Environ Sci Technol; 2002 May; 36(9):2082-7. PubMed ID: 12026997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of NAPL-contaminated porous media using micro-nano ozone bubbles: Bench-scale experiments.
    Kwon H; Mohamed MM; Annable MD; Kim H
    J Contam Hydrol; 2020 Jan; 228():103563. PubMed ID: 31761389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of residual NAPL source removal techniques in 3D metric scale experiments.
    Atteia O; Jousse F; Cohen G; Höhener P
    J Contam Hydrol; 2017 Jul; 202():23-32. PubMed ID: 28528771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.