These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 28282139)
1. Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation. Matafora V; Corno A; Ciliberto A; Bachi A J Proteome Res; 2017 Apr; 16(4):1719-1727. PubMed ID: 28282139 [TBL] [Abstract][Full Text] [Related]
2. Missing Value Monitoring to Address Missing Values in Quantitative Proteomics. Matafora V; Bachi A Methods Mol Biol; 2021; 2228():401-408. PubMed ID: 33950505 [TBL] [Abstract][Full Text] [Related]
3. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
4. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820 [TBL] [Abstract][Full Text] [Related]
5. Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods: a pilot analysis. Folkesson E; Turkiewicz A; Englund M; Önnerfjord P BMC Musculoskelet Disord; 2018 Nov; 19(1):416. PubMed ID: 30497455 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins. Cho KC; Oh S; Wang Y; Rosenthal LS; Na CH; Zhang H J Proteome Res; 2021 Sep; 20(9):4284-4291. PubMed ID: 34384221 [TBL] [Abstract][Full Text] [Related]
9. Whole cell, label free protein quantitation with data independent acquisition: quantitation at the MS2 level. McQueen P; Spicer V; Schellenberg J; Krokhin O; Sparling R; Levin D; Wilkins JA Proteomics; 2015 Jan; 15(1):16-24. PubMed ID: 25348682 [TBL] [Abstract][Full Text] [Related]
10. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803 [TBL] [Abstract][Full Text] [Related]
11. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. Fernández-Costa C; Martínez-Bartolomé S; McClatchy DB; Saviola AJ; Yu NK; Yates JR J Proteome Res; 2020 Aug; 19(8):3153-3161. PubMed ID: 32510229 [TBL] [Abstract][Full Text] [Related]
12. Automated Workflow for Peptide-Level Quantitation from DIA/SWATH-MS Data. Gupta S; Röst H Methods Mol Biol; 2021; 2228():453-468. PubMed ID: 33950509 [TBL] [Abstract][Full Text] [Related]
13. Advanced Precursor Ion Selection Algorithms for Increased Depth of Bottom-Up Proteomic Profiling. Kreimer S; Belov ME; Danielson WF; Levitsky LI; Gorshkov MV; Karger BL; Ivanov AR J Proteome Res; 2016 Oct; 15(10):3563-3573. PubMed ID: 27569903 [TBL] [Abstract][Full Text] [Related]
14. Use of Hybrid Data-Dependent and -Independent Acquisition Spectral Libraries Empowers Dual-Proteome Profiling. Willems P; Fels U; Staes A; Gevaert K; Van Damme P J Proteome Res; 2021 Feb; 20(2):1165-1177. PubMed ID: 33467856 [TBL] [Abstract][Full Text] [Related]
15. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275 [TBL] [Abstract][Full Text] [Related]
16. PASS-DIA: A Data-Independent Acquisition Approach for Discovery Studies. Mun DG; Renuse S; Saraswat M; Madugundu A; Udainiya S; Kim H; Park SR; Zhao H; Nirujogi RS; Na CH; Kannan N; Yates JR; Lee SW; Pandey A Anal Chem; 2020 Nov; 92(21):14466-14475. PubMed ID: 33079518 [TBL] [Abstract][Full Text] [Related]
17. Proper imputation of missing values in proteomics datasets for differential expression analysis. Liu M; Dongre A Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32520347 [TBL] [Abstract][Full Text] [Related]
18. IceR improves proteome coverage and data completeness in global and single-cell proteomics. Kalxdorf M; Müller T; Stegle O; Krijgsveld J Nat Commun; 2021 Aug; 12(1):4787. PubMed ID: 34373457 [TBL] [Abstract][Full Text] [Related]
19. BoxCar and Library-Free Data-Independent Acquisition Substantially Improve the Depth, Range, and Completeness of Label-Free Quantitative Proteomics. Mehta D; Scandola S; Uhrig RG Anal Chem; 2022 Jan; 94(2):793-802. PubMed ID: 34978796 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Urinary Proteome Library Generation Methods on Data-Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis. Zhao M; Liu X; Sun H; Guo Z; Liu X; Sun W Proteomics Clin Appl; 2019 Sep; 13(5):e1800152. PubMed ID: 31017348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]