These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28282178)

  • 1. Viscoelastic Drag Forces and Crossover from No-Slip to Slip Boundary Conditions for Flow near Air-Water Interfaces.
    Maali A; Boisgard R; Chraibi H; Zhang Z; Kellay H; Würger A
    Phys Rev Lett; 2017 Feb; 118(8):084501. PubMed ID: 28282178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscocapillary Response of Gas Bubbles Probed by Thermal Noise Atomic Force Measurement.
    Wang Y; Zeng B; Alem HT; Zhang Z; Charlaix E; Maali A
    Langmuir; 2018 Jan; 34(4):1371-1375. PubMed ID: 29281795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions.
    Manor O; Vakarelski IU; Stevens GW; Grieser F; Dagastine RR; Chan DY
    Langmuir; 2008 Oct; 24(20):11533-43. PubMed ID: 18808166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces.
    Manor O; Vakarelski IU; Tang X; O'Shea SJ; Stevens GW; Grieser F; Dagastine RR; Chan DY
    Phys Rev Lett; 2008 Jul; 101(2):024501. PubMed ID: 18764184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.
    Li Y; Bhushan B
    Soft Matter; 2015 Oct; 11(38):7680-95. PubMed ID: 26303742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.
    Maali A; Wang Y; Bhushan B
    Langmuir; 2009 Oct; 25(20):12002-5. PubMed ID: 19821617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope.
    Honig CD; Sader JE; Mulvaney P; Ducker WA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056305. PubMed ID: 20866320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of surface charge density and its effect on boundary slip.
    Jing D; Bhushan B
    Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
    Zheng W; Wang LP; Or D; Lazouskaya V; Jin Y
    Langmuir; 2012 Sep; 28(35):12753-61. PubMed ID: 22867425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements.
    Zhu L; Attard P; Neto C
    Langmuir; 2011 Jun; 27(11):6712-9. PubMed ID: 21542568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of slip between a probe particle and a gel in microrheology.
    Fu HC; Shenoy VB; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.
    Jing D; Bhushan B
    Langmuir; 2013 Nov; 29(47):14691-700. PubMed ID: 24168076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
    Pan Y; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2014; 5():1042-65. PubMed ID: 25161839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol.
    Li Y; Pan Y; Zhao X
    Beilstein J Nanotechnol; 2017; 8():2504-2514. PubMed ID: 29259865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary conditions at the liquid-liquid interface in the presence of surfactants.
    Hu Y; Zhang X; Wang W
    Langmuir; 2010 Jul; 26(13):10693-702. PubMed ID: 20507080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Study of Hydrodynamic Forces for AFM Operations in Liquid.
    Berthold T; Benstetter G; Frammelsberger W; Rodríguez R; Nafría M
    Scanning; 2017; 2017():6286595. PubMed ID: 29109823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. III. Shear-rate-dependent slip.
    Zhu L; Neto C; Attard P
    Langmuir; 2012 Feb; 28(7):3465-73. PubMed ID: 22276815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications for Colloidal Assembly at Air/Water Interfaces.
    Cui X; Shi C; Zhang S; Xie L; Liu J; Jiang D; Zeng H
    Chem Asian J; 2017 Jul; 12(13):1568-1577. PubMed ID: 28380273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.