These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28282179)

  • 1. Temperature and Magnetic Field Dependence of the Internal and Lattice Structures of Skyrmions by Off-Axis Electron Holography.
    Shibata K; Kovács A; Kiselev NS; Kanazawa N; Dunin-Borkowski RE; Tokura Y
    Phys Rev Lett; 2017 Feb; 118(8):087202. PubMed ID: 28282179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography.
    Li ZA; Zheng F; Tavabi AH; Caron J; Jin C; Du H; Kovács A; Tian M; Farle M; Dunin-Borkowski RE
    Nano Lett; 2017 Mar; 17(3):1395-1401. PubMed ID: 28125235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet.
    Du H; Zhao X; Rybakov FN; Borisov AB; Wang S; Tang J; Jin C; Wang C; Wei W; Kiselev NS; Zhang Y; Che R; Blügel S; Tian M
    Phys Rev Lett; 2018 May; 120(19):197203. PubMed ID: 29799255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Holography and Magnetotransport Measurements Reveal Stabilized Magnetic Skyrmions in Fe
    Mathur N; Stolt MJ; Niitsu K; Yu X; Shindo D; Tokura Y; Jin S
    ACS Nano; 2019 Jul; 13(7):7833-7841. PubMed ID: 31268671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks.
    Zhao X; Jin C; Wang C; Du H; Zang J; Tian M; Che R; Zhang Y
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4918-23. PubMed ID: 27051067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions.
    Stolt MJ; Li ZA; Phillips B; Song D; Mathur N; Dunin-Borkowski RE; Jin S
    Nano Lett; 2017 Jan; 17(1):508-514. PubMed ID: 27936792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-space anisotropic dielectric response in a multiferroic skyrmion lattice.
    Chu P; Xie YL; Zhang Y; Chen JP; Chen DP; Yan ZB; Liu JM
    Sci Rep; 2015 Feb; 5():8318. PubMed ID: 25661786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization and Reversal of Skyrmion Lattice in Ta/CoFeB/MgO Multilayers.
    Qin Z; Wang Y; Zhu S; Jin C; Fu J; Liu Q; Cao J
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36556-36563. PubMed ID: 30277060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice.
    Matsumoto T; So YG; Kohno Y; Sawada H; Ikuhara Y; Shibata N
    Sci Adv; 2016 Feb; 2(2):e1501280. PubMed ID: 26933690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confinement of Skyrmions in Nanoscale FeGe Device-like Structures.
    Twitchett-Harrison AC; Loudon JC; Pepper RA; Birch MT; Fangohr H; Midgley PA; Balakrishnan G; Hatton PD
    ACS Appl Electron Mater; 2022 Sep; 4(9):4427-4437. PubMed ID: 36185075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet.
    Wang C; Du H; Zhao X; Jin C; Tian M; Zhang Y; Che R
    Nano Lett; 2017 May; 17(5):2921-2927. PubMed ID: 28350960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Zero-Field Skyrmion Formation in FeGe Epitaxial Thin Films.
    Gallagher JC; Meng KY; Brangham JT; Wang HL; Esser BD; McComb DW; Yang FY
    Phys Rev Lett; 2017 Jan; 118(2):027201. PubMed ID: 28128588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic skyrmions in FePt nanoparticles having Reuleaux 3D geometry: a micromagnetic simulation study.
    Stavrou VD; Kourounis D; Dimakopoulos K; Panagiotopoulos I; Gergidis LN
    Nanoscale; 2019 Nov; 11(42):20102-20114. PubMed ID: 31612890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deriving the skyrmion Hall angle from skyrmion lattice dynamics.
    Brearton R; Turnbull LA; Verezhak JAT; Balakrishnan G; Hatton PD; van der Laan G; Hesjedal T
    Nat Commun; 2021 May; 12(1):2723. PubMed ID: 33976177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hopfion rings in a cubic chiral magnet.
    Zheng F; Kiselev NS; Rybakov FN; Yang L; Shi W; Blügel S; Dunin-Borkowski RE
    Nature; 2023 Nov; 623(7988):718-723. PubMed ID: 37993571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current-Driven Motion of Domain Boundaries between Skyrmion Lattice and Helical Magnetic Structure.
    Shibata K; Tanigaki T; Akashi T; Shinada H; Harada K; Niitsu K; Shindo D; Kanazawa N; Tokura Y; Arima TH
    Nano Lett; 2018 Feb; 18(2):929-933. PubMed ID: 29345472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-Temperature Zero-Field
    Zhang Y; Shi M; Wang W; Xu X; Tian M; Song D; Du H
    Nano Lett; 2023 Nov; 23(22):10205-10212. PubMed ID: 37942916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observation of chiral magnetic bobbers in B20-type FeGe.
    Zheng F; Rybakov FN; Borisov AB; Song D; Wang S; Li ZA; Du H; Kiselev NS; Caron J; Kovács A; Tian M; Zhang Y; Blügel S; Dunin-Borkowski RE
    Nat Nanotechnol; 2018 Jun; 13(6):451-455. PubMed ID: 29632400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-axis electron holography of Néel-type skyrmions in multilayers of heavy metals and ferromagnets.
    Denneulin T; Caron J; Hoffmann M; Lin M; Tan HK; Kovács A; Blügel S; Dunin-Borkowski RE
    Ultramicroscopy; 2021 Jan; 220():113155. PubMed ID: 33181365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.