These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 28282423)
1. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. Huang H; Liu Y; Wang L; Li W PLoS One; 2017; 12(3):e0173716. PubMed ID: 28282423 [TBL] [Abstract][Full Text] [Related]
2. Autoimmune-Mediated Retinopathy in CXCR5-Deficient Mice as the Result of Age-Related Macular Degeneration Associated Proteins Accumulation. Lennikov A; Saddala MS; Mukwaya A; Tang S; Huang H Front Immunol; 2019; 10():1903. PubMed ID: 31474986 [TBL] [Abstract][Full Text] [Related]
3. CXCR5/NRF2 double knockout mice develop retinal degeneration phenotype at early adult age. Huang H; Lennikov A Exp Eye Res; 2020 Jul; 196():108061. PubMed ID: 32387618 [TBL] [Abstract][Full Text] [Related]
4. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium. Wavre-Shapton ST; Tolmachova T; Lopes da Silva M; Futter CE; Seabra MC PLoS One; 2013; 8(2):e57769. PubMed ID: 23460904 [TBL] [Abstract][Full Text] [Related]
5. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Luhmann UF; Robbie S; Munro PM; Barker SE; Duran Y; Luong V; Fitzke FW; Bainbridge JW; Ali RR; MacLaren RE Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5934-43. PubMed ID: 19578022 [TBL] [Abstract][Full Text] [Related]
6. Zhang M; Chu Y; Mowery J; Konkel B; Galli S; Theos AC; Golestaneh N Dis Model Mech; 2018 Aug; 11(9):. PubMed ID: 29925537 [TBL] [Abstract][Full Text] [Related]
7. Deficiency of C-X-C chemokine receptor type 5 (CXCR5) gene causes dysfunction of retinal pigment epithelium cells. Lennikov A; Mukwaya A; Saddala MS; Huang H Lab Invest; 2021 Feb; 101(2):228-244. PubMed ID: 32994482 [TBL] [Abstract][Full Text] [Related]
8. Inducible RPE-specific GPX4 knockout causes oxidative stress and retinal degeneration with features of age-related macular degeneration. Wojciechowski AM; Bell BA; Song Y; Anderson BD; Conomikes A; Petruconis C; Dunaief JL Exp Eye Res; 2024 Oct; 247():110028. PubMed ID: 39128667 [TBL] [Abstract][Full Text] [Related]
9. Fundus autofluorescence and fate of glycoxidized particles injected into subretinal space in rabbit age-related macular degeneration model. Hirata M; Yasukawa T; Wiedemann P; Kimura E; Kunou N; Eichler W; Takase A; Sato R; Ogura Y Graefes Arch Clin Exp Ophthalmol; 2009 Jul; 247(7):929-37. PubMed ID: 19330346 [TBL] [Abstract][Full Text] [Related]
10. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Lenis TL; Hu J; Ng SY; Jiang Z; Sarfare S; Lloyd MB; Esposito NJ; Samuel W; Jaworski C; Bok D; Finnemann SC; Radeke MJ; Redmond TM; Travis GH; Radu RA Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11120-E11127. PubMed ID: 30397118 [TBL] [Abstract][Full Text] [Related]
11. Detecting Aβ deposition and RPE cell senescence in the retinas of SAMP8 mice. Feng L; Cao L; Zhang Y; Wang F Discov Med; 2016 Mar; 21(115):149-58. PubMed ID: 27115165 [TBL] [Abstract][Full Text] [Related]
12. Morphologic and electroretinographic phenotype of SR-BI knockout mice after a long-term atherogenic diet. Provost AC; Vede L; Bigot K; Keller N; Tailleux A; Jaïs JP; Savoldelli M; Ameqrane I; Lacassagne E; Legeais JM; Staels B; Menasche M; Mallat Z; Behar-Cohen F; Abitbol M Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3931-42. PubMed ID: 19420333 [TBL] [Abstract][Full Text] [Related]
13. RPE phagocytic function declines in age-related macular degeneration and is rescued by human umbilical tissue derived cells. Inana G; Murat C; An W; Yao X; Harris IR; Cao J J Transl Med; 2018 Mar; 16(1):63. PubMed ID: 29534722 [TBL] [Abstract][Full Text] [Related]
14. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease--correlation with accumulation of A2E, retinal function, and histology. Charbel Issa P; Barnard AR; Singh MS; Carter E; Jiang Z; Radu RA; Schraermeyer U; MacLaren RE Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5602-12. PubMed ID: 23761084 [TBL] [Abstract][Full Text] [Related]
15. Defective phagosome motility and degradation in cell nonautonomous RPE pathogenesis of a dominant macular degeneration. Esteve-Rudd J; Hazim RA; Diemer T; Paniagua AE; Volland S; Umapathy A; Williams DS Proc Natl Acad Sci U S A; 2018 May; 115(21):5468-5473. PubMed ID: 29735674 [TBL] [Abstract][Full Text] [Related]
16. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Ach T; Tolstik E; Messinger JD; Zarubina AV; Heintzmann R; Curcio CA Invest Ophthalmol Vis Sci; 2015 May; 56(5):3242-52. PubMed ID: 25758814 [TBL] [Abstract][Full Text] [Related]
17. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Kim SY; Kambhampati SP; Bhutto IA; McLeod DS; Lutty GA; Kannan RM Exp Eye Res; 2021 Feb; 203():108391. PubMed ID: 33307075 [TBL] [Abstract][Full Text] [Related]
18. Glycoxidized particles mimic lipofuscin accumulation in aging eyes: a new age-related macular degeneration model in rabbits. Yasukawa T; Wiedemann P; Hoffmann S; Kacza J; Eichler W; Wang YS; Nishiwaki A; Seeger J; Ogura Y Graefes Arch Clin Exp Ophthalmol; 2007 Oct; 245(10):1475-85. PubMed ID: 17406884 [TBL] [Abstract][Full Text] [Related]
19. Subretinal injection of amyloid-β peptide accelerates RPE cell senescence and retinal degeneration. Liu C; Cao L; Yang S; Xu L; Liu P; Wang F; Xu D Int J Mol Med; 2015 Jan; 35(1):169-76. PubMed ID: 25385658 [TBL] [Abstract][Full Text] [Related]
20. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]