These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28282439)

  • 1. Iterative free-energy optimization for recurrent neural networks (INFERNO).
    Pitti A; Gaussier P; Quoy M
    PLoS One; 2017; 12(3):e0173684. PubMed ID: 28282439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gated spiking neural network using Iterative Free-Energy Optimization and rank-order coding for structure learning in memory sequences (INFERNO GATE).
    Pitti A; Quoy M; Lavandier C; Boucenna S
    Neural Netw; 2020 Jan; 121():242-258. PubMed ID: 31581065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-inspired model for early vocal learning and correspondence matching using free-energy optimization.
    Pitti A; Quoy M; Boucenna S; Lavandier C
    PLoS Comput Biol; 2021 Feb; 17(2):e1008566. PubMed ID: 33600482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional Bistability, a Generic Cellular Mnemonic Mechanism for Robust and Flexible Working Memory Computations.
    Rodriguez G; Sarazin M; Clemente A; Holden S; Paz JT; Delord B
    J Neurosci; 2018 May; 38(22):5209-5219. PubMed ID: 29712783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks.
    Kim R; Sejnowski TJ
    Nat Neurosci; 2021 Jan; 24(1):129-139. PubMed ID: 33288909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.
    Kasabov NK
    Neural Netw; 2014 Apr; 52():62-76. PubMed ID: 24508754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity.
    Nakano T; Otsuka M; Yoshimoto J; Doya K
    PLoS One; 2015; 10(3):e0115620. PubMed ID: 25734662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is Learning in Biological Neural Networks Based on Stochastic Gradient Descent? An Analysis Using Stochastic Processes.
    Christensen S; Kallsen J
    Neural Comput; 2024 Jun; 36(7):1424-1432. PubMed ID: 38669690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning.
    Averbeck BB
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2121331119. PubMed ID: 35622896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A solution to the learning dilemma for recurrent networks of spiking neurons.
    Bellec G; Scherr F; Subramoney A; Hajek E; Salaj D; Legenstein R; Maass W
    Nat Commun; 2020 Jul; 11(1):3625. PubMed ID: 32681001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study on the neural mechanism of sequential pattern memory.
    Morita M
    Brain Res Cogn Brain Res; 1996 Dec; 5(1-2):137-46. PubMed ID: 9049080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memories as bifurcations: realization by collective dynamics of spiking neurons under stochastic inputs.
    Kurikawa T; Kaneko K
    Neural Netw; 2015 Feb; 62():25-31. PubMed ID: 25124069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local online learning in recurrent networks with random feedback.
    Murray JM
    Elife; 2019 May; 8():. PubMed ID: 31124785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks.
    Shen J; Zhao Y; Liu JK; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Working models of working memory.
    Barak O; Tsodyks M
    Curr Opin Neurobiol; 2014 Apr; 25():20-4. PubMed ID: 24709596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks.
    Frady EP; Kleyko D; Sommer FT
    Neural Comput; 2018 Jun; 30(6):1449-1513. PubMed ID: 29652585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent Network Models of Sequence Generation and Memory.
    Rajan K; Harvey CD; Tank DW
    Neuron; 2016 Apr; 90(1):128-42. PubMed ID: 26971945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.