These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28282573)
1. Tracing sialoglycans on cell membrane via surface-enhanced Raman scattering spectroscopy with a phenylboronic acid-based nanosensor in molecular recognition. Liang L; Qu H; Zhang B; Zhang J; Deng R; Shen Y; Xu S; Liang C; Xu W Biosens Bioelectron; 2017 Aug; 94():148-154. PubMed ID: 28282573 [TBL] [Abstract][Full Text] [Related]
2. Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy. Deng R; Yue J; Qu H; Liang L; Sun D; Zhang J; Liang C; Xu W; Xu S Talanta; 2018 Mar; 179():200-206. PubMed ID: 29310222 [TBL] [Abstract][Full Text] [Related]
3. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. Sun F; Ella-Menye JR; Galvan DD; Bai T; Hung HC; Chou YN; Zhang P; Jiang S; Yu Q ACS Nano; 2015 Mar; 9(3):2668-76. PubMed ID: 25738888 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Wang H; Zhou Y; Jiang X; Sun B; Zhu Y; Wang H; Su Y; He Y Angew Chem Int Ed Engl; 2015 Apr; 54(17):5132-6. PubMed ID: 25820791 [TBL] [Abstract][Full Text] [Related]
6. A double boronic acid affinity "sandwich" SERS biosensor based on magnetic boronic acid controllable-oriented imprinting for high-affinity biomimetic specific recognition and rapid detection of target glycoproteins. Geng P; Guan M; Wang Y; Mi F; Zhang S; Rao X Mikrochim Acta; 2024 Jul; 191(8):444. PubMed ID: 38955823 [TBL] [Abstract][Full Text] [Related]
7. Glucose Sensing Using Surface-Enhanced Raman-Mode Constraining. Yang D; Afroosheh S; Lee JO; Cho H; Kumar S; Siddique RH; Narasimhan V; Yoon YZ; Zayak AT; Choo H Anal Chem; 2018 Dec; 90(24):14269-14278. PubMed ID: 30369240 [TBL] [Abstract][Full Text] [Related]
8. Simple and sensitive galactose monitoring based on capillary SERS sensor. Heo EH; Chang H Anal Bioanal Chem; 2024 Jul; 416(16):3811-3819. PubMed ID: 38702448 [TBL] [Abstract][Full Text] [Related]
9. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites. Wang P; Pang S; Pearson B; Chujo Y; McLandsborough L; Fan M; He L Anal Bioanal Chem; 2017 Mar; 409(8):2229-2238. PubMed ID: 28091716 [TBL] [Abstract][Full Text] [Related]
10. Facile and sensitive glucose sandwich assay using in situ-generated Raman reporters. Bi X; Du X; Jiang J; Huang X Anal Chem; 2015 Feb; 87(3):2016-21. PubMed ID: 25583068 [TBL] [Abstract][Full Text] [Related]
11. Silver nanocube coupling with a nanoporous silver film for dual-molecule recognition based ultrasensitive SERS detection of dopamine. Lu D; Fan M; Cai R; Huang Z; You R; Huang L; Feng S; Lu Y Analyst; 2020 Apr; 145(8):3009-3016. PubMed ID: 32129782 [TBL] [Abstract][Full Text] [Related]
12. Sensing Glucose in Urine and Serum and Hydrogen Peroxide in Living Cells by Use of a Novel Boronate Nanoprobe Based on Surface-Enhanced Raman Spectroscopy. Gu X; Wang H; Schultz ZD; Camden JP Anal Chem; 2016 Jul; 88(14):7191-7. PubMed ID: 27356266 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Detection of Intracellular Nitric Oxide and Peroxynitrite by a Surface-Enhanced Raman Scattering Nanosensor with Dual Reactivity. Chen HY; Kouadio Fodjo E; Jiang L; Chang S; Li JB; Zhan DS; Gu HX; Li DW ACS Sens; 2019 Dec; 4(12):3234-3239. PubMed ID: 31736302 [TBL] [Abstract][Full Text] [Related]
14. Highly sensitive and selective SERS detection of caspase-3 during cell apoptosis based on the target-induced hotspot effect. Zhuang Y; Dong H; Liu T; Zhao Y; Xu Y; Zhao X; Sun D Analyst; 2024 Jan; 149(2):490-496. PubMed ID: 38062995 [TBL] [Abstract][Full Text] [Related]
15. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy. Wallace GQ; Tabatabaei M; Zuin MS; Workentin MS; Lagugné-Labarthet F Anal Bioanal Chem; 2016 Jan; 408(2):609-18. PubMed ID: 26521177 [TBL] [Abstract][Full Text] [Related]
16. Multiscale flaked silver SERS-substrate for glycated human albumin biosensing. Nechaeva NL; Boginskaya IA; Ivanov AV; Sarychev AK; Eremenko AV; Ryzhikov IA; Lagarkov AN; Kurochkin IN Anal Chim Acta; 2020 Mar; 1100():250-257. PubMed ID: 31987148 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled silver nanochains for surface-enhanced Raman scattering. Yang Y; Shi J; Tanaka T; Nogami M Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408 [TBL] [Abstract][Full Text] [Related]
18. Application of surface enhanced Raman spectroscopy as a diagnostic system for hypersialylated metastatic cancers. Shashni B; Horiguchi Y; Kurosu K; Furusho H; Nagasaki Y Biomaterials; 2017 Jul; 134():143-153. PubMed ID: 28460336 [TBL] [Abstract][Full Text] [Related]
19. 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies. Parlak C; Ramasami P; Tursun M; Rhyman L; Kaya MF; Atar N; Alver Ö; Şenyel M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():131-8. PubMed ID: 25754388 [TBL] [Abstract][Full Text] [Related]