These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28282626)

  • 1. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.
    Meurer F; Do HT; Sadowski G; Held C
    Biophys Chem; 2017 Apr; 223():30-38. PubMed ID: 28282626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standard Gibbs Energy of Metabolic Reactions: I. Hexokinase Reaction.
    Meurer F; Bobrownik M; Sadowski G; Held C
    Biochemistry; 2016 Oct; 55(40):5665-5674. PubMed ID: 27653185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of enzyme-catalyzed esterifications: I. Succinic acid esterification with ethanol.
    Altuntepe E; Greinert T; Hartmann F; Reinhardt A; Sadowski G; Held C
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):5973-5984. PubMed ID: 28500386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standard Gibbs energy of metabolic reactions: V. Enolase reaction.
    Greinert T; Vogel K; Seifert AI; Siewert R; Andreeva IV; Verevkin SP; Maskow T; Sadowski G; Held C
    Biochim Biophys Acta Proteins Proteom; 2020 Apr; 1868(4):140365. PubMed ID: 31958502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standard Gibbs Energy of Metabolic Reactions: III The 3-Phosphoglycerate Kinase Reaction.
    Wangler A; Schmidt C; Sadowski G; Held C
    ACS Omega; 2018 Feb; 3(2):1783-1790. PubMed ID: 30023815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standard Gibbs energy of metabolic reactions: IV. Triosephosphate isomerase reaction.
    Greinert T; Baumhove K; Sadowski G; Held C
    Biophys Chem; 2020 Mar; 258():106330. PubMed ID: 31981743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of activity coefficients in bioreaction equilibria: thermodynamics of methyl ferulate hydrolysis.
    Hoffmann P; Voges M; Held C; Sadowski G
    Biophys Chem; 2013; 173-174():21-30. PubMed ID: 23485130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A thermodynamic investigation of the glucose-6-phosphate isomerization.
    Hoffmann P; Held C; Maskow T; Sadowski G
    Biophys Chem; 2014 Dec; 195():22-31. PubMed ID: 25190480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of enzyme-catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols.
    Altuntepe E; Emel'yanenko VN; Forster-Rotgers M; Sadowski G; Verevkin SP; Held C
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7509-7521. PubMed ID: 28905090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L; Grieco MA; Galina A
    FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of pH and free Mg2+ on ATP linked enzymes and the calculation of Gibbs free energy of ATP hydrolysis.
    Bergman C; Kashiwaya Y; Veech RL
    J Phys Chem B; 2010 Dec; 114(49):16137-46. PubMed ID: 20866109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levels of thermodynamic treatment of biochemical reaction systems.
    Alberty RA
    Biophys J; 1993 Sep; 65(3):1243-54. PubMed ID: 8241405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standard thermodynamic formation properties for the adenosine 5'-triphosphate series.
    Alberty RA; Goldberg RN
    Biochemistry; 1992 Nov; 31(43):10610-5. PubMed ID: 1420176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Bioreactions.
    Held C; Sadowski G
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and biochemical thermodynamics: from ATP hydrolysis to a general reassessment.
    Iotti S; Sabatini A; Vacca A
    J Phys Chem B; 2010 Feb; 114(5):1985-93. PubMed ID: 20085238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combination of transformed and constrained Gibbs energies.
    Blomberg PB; Koukkari PS
    Math Biosci; 2009 Aug; 220(2):81-8. PubMed ID: 19427873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of hexokinase catalyzed reactions. II. Measurement and calculation of enthalpies of reaction as a function of magnesium ion concentration.
    Goldberg RN
    Biophys Chem; 1976 May; 4(3):215-21. PubMed ID: 7326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric determination of thermodynamic parameters of reaction reveals different enthalpic compensations of the yeast hexokinase isozymes.
    Bianconi ML
    J Biol Chem; 2003 May; 278(21):18709-13. PubMed ID: 12611889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants.
    Alberty RA
    Arch Biochem Biophys; 1998 May; 353(1):116-30. PubMed ID: 9578607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustment of K' to varying pH and pMg for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment.
    Golding EM; Teague WE; Dobson GP
    J Exp Biol; 1995 Aug; 198(Pt 8):1775-82. PubMed ID: 7636446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.