BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28282633)

  • 1. Catalytic promiscuity and heme-dependent redox regulation of H
    Banerjee R
    Curr Opin Chem Biol; 2017 Apr; 37():115-121. PubMed ID: 28282633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Catalytic Promiscuity during Hydrogen Sulfide Oxidation.
    Landry AP; Ballou DP; Banerjee R
    ACS Chem Biol; 2018 Jun; 13(6):1651-1658. PubMed ID: 29715001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of human sulfide: quinone oxidoreductase in H2S metabolism.
    Jackson MR; Melideo SL; Jorns MS
    Methods Enzymol; 2015; 554():255-70. PubMed ID: 25725526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase.
    Nagahara N; Nagano M; Ito T; Suzuki H
    Methods Enzymol; 2015; 554():229-54. PubMed ID: 25725525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS).
    Du Y; Liu G; Yan Y; Huang D; Luo W; Martinkova M; Man P; Shimizu T
    Biometals; 2013 Oct; 26(5):839-52. PubMed ID: 23736976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.
    Calderwood A; Kopriva S
    Nitric Oxide; 2014 Sep; 41():72-8. PubMed ID: 24582856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Roncoroni M; Gardner RC; Jiranek V
    FEMS Yeast Res; 2016 Dec; 16(8):. PubMed ID: 27915245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mutations in active site heme ligands on the spectroscopic and catalytic properties of SoxAX cytochromes.
    Kilmartin JR; Bernhardt PV; Dhouib R; Hanson GR; Riley MJ; Kappler U
    J Inorg Biochem; 2016 Sep; 162():309-318. PubMed ID: 27112898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative pathway of H
    Nagahara N; Koike S; Nirasawa T; Kimura H; Ogasawara Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):648-653. PubMed ID: 29331374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.
    Basic A; Blomqvist M; Dahlén G; Svensäter G
    BMC Microbiol; 2017 Mar; 17(1):61. PubMed ID: 28288582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2S and its role in redox signaling.
    Kabil O; Motl N; Banerjee R
    Biochim Biophys Acta; 2014 Aug; 1844(8):1355-66. PubMed ID: 24418393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hydrogen sulfide in the retina.
    Cornwell A; Badiei A
    Exp Eye Res; 2023 Sep; 234():109568. PubMed ID: 37460081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Transnitrosation reactions of hydrogen sulfide (H
    Tsikas D; Böhmer A
    Nitric Oxide; 2017 May; 65():22-36. PubMed ID: 28185882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioethers as markers of hydrogen sulfide production in homocystinurias.
    Kožich V; Krijt J; Sokolová J; Melenovská P; Ješina P; Vozdek R; Majtán T; Kraus JP
    Biochimie; 2016 Jul; 126():14-20. PubMed ID: 26791043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin.
    Blachier F; Beaumont M; Kim E
    Curr Opin Clin Nutr Metab Care; 2019 Jan; 22(1):68-75. PubMed ID: 30461448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A source of hydrogen sulfide and a mechanism of its release in the brain.
    Ishigami M; Hiraki K; Umemura K; Ogasawara Y; Ishii K; Kimura H
    Antioxid Redox Signal; 2009 Feb; 11(2):205-14. PubMed ID: 18754702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways.
    Mishanina TV; Libiad M; Banerjee R
    Nat Chem Biol; 2015 Jul; 11(7):457-64. PubMed ID: 26083070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate.
    Ebrecht AC; Asención Diez MD; Piattoni CV; Guerrero SA; Iglesias AA
    Biochim Biophys Acta; 2015 Jan; 1850(1):88-96. PubMed ID: 25316289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back.
    Papenbrock J; Riemenschneider A; Kamp A; Schulz-Vogt HN; Schmidt A
    Plant Biol (Stuttg); 2007 Sep; 9(5):582-8. PubMed ID: 17853358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.
    Kowalczyk-Pachel D; Iciek M; Wydra K; Nowak E; Górny M; Filip M; Włodek L; Lorenc-Koci E
    PLoS One; 2016; 11(1):e0147238. PubMed ID: 26808533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.