BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28283085)

  • 21. Solution Structure of a Lanthanide-binding DNA Aptamer Determined Using High Quality pseudocontact shift restraints.
    Andrałojć W; Wieruszewska J; Pasternak K; Gdaniec Z
    Chemistry; 2022 Nov; 28(66):e202202114. PubMed ID: 36043489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy.
    Hass MA; Liu WM; Agafonov RV; Otten R; Phung LA; Schilder JT; Kern D; Ubbink M
    J Biomol NMR; 2015 Feb; 61(2):123-36. PubMed ID: 25563704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR pseudocontact shifts in a symmetric protein homotrimer.
    Müntener T; Böhm R; Atz K; Häussinger D; Hiller S
    J Biomol NMR; 2020 Sep; 74(8-9):413-419. PubMed ID: 32621004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect.
    Saio T; Ogura K; Yokochi M; Kobashigawa Y; Inagaki F
    J Biomol NMR; 2009 Jul; 44(3):157-66. PubMed ID: 19468839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag.
    Huang F; Pei YY; Zuo HH; Chen JL; Yang Y; Su XC
    Chemistry; 2013 Dec; 19(50):17141-9. PubMed ID: 24307370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of lanthanoid-binding proteins using NMR spectroscopy.
    Ravera E; Cerofolini L; Fragai M; Parigi G; Luchinat C
    Methods Enzymol; 2021; 651():103-137. PubMed ID: 33888201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontact shifts in proteins.
    Loh CT; Ozawa K; Tuck KL; Barlow N; Huber T; Otting G; Graham B
    Bioconjug Chem; 2013 Feb; 24(2):260-8. PubMed ID: 23294422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins.
    Barb AW; Subedi GP
    J Biomol NMR; 2016 Jan; 64(1):75-85. PubMed ID: 26728077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New Lanthanide Tag for the Generation of Pseudocontact Shifts in DNA by Site-Specific Ligation to a Phosphorothioate Group.
    Wu Z; Lee MD; Carruthers TJ; Szabo M; Dennis ML; Swarbrick JD; Graham B; Otting G
    Bioconjug Chem; 2017 Jun; 28(6):1741-1748. PubMed ID: 28485576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment.
    Keizers PH; Saragliadis A; Hiruma Y; Overhand M; Ubbink M
    J Am Chem Soc; 2008 Nov; 130(44):14802-12. PubMed ID: 18826316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel, rationally designed lanthanoid chelating tag delivers large paramagnetic structural restraints for biomolecular NMR.
    Joss D; Winter F; Häussinger D
    Chem Commun (Camb); 2020 Oct; 56(84):12861-12864. PubMed ID: 32969418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Ln(DPA)(3)](3-) is a convenient paramagnetic shift reagent for protein NMR studies.
    Su XC; Liang H; Loscha KV; Otting G
    J Am Chem Soc; 2009 Aug; 131(30):10352-3. PubMed ID: 19585996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiol-ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR.
    Li QF; Yang Y; Maleckis A; Otting G; Su XC
    Chem Commun (Camb); 2012 Mar; 48(21):2704-6. PubMed ID: 22302218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides.
    Kato K; Yamaguchi T
    Glycoconj J; 2015 Oct; 32(7):505-13. PubMed ID: 26050258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic Exchange of the Metal Chelating Moiety: A Key Factor in Determining the Rigidity of Protein-Tag Conjugates in Paramagnetic NMR.
    Chen JL; Li B; Li XY; Su XC
    J Phys Chem Lett; 2020 Nov; 11(21):9493-9500. PubMed ID: 33108729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paramagnetically induced residual dipolar couplings for solution structure determination of lanthanide binding proteins.
    Barbieri R; Bertini I; Cavallaro G; Lee YM; Luchinat C; Rosato A
    J Am Chem Soc; 2002 May; 124(19):5581-7. PubMed ID: 11996601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable paramagnetic relaxation enhancements by [Gd(DPA)(3)] (3-) for protein structure analysis.
    Yagi H; Loscha KV; Su XC; Stanton-Cook M; Huber T; Otting G
    J Biomol NMR; 2010 Jun; 47(2):143-53. PubMed ID: 20405166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural biology of the lanthanides-mining rare earths in the Protein Data Bank.
    Djinovic-Carugo K; Carugo O
    J Inorg Biochem; 2015 Feb; 143():69-76. PubMed ID: 25528480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-specific labeling of proteins with a chemically stable, high-affinity tag for protein study.
    Yang Y; Li QF; Cao C; Huang F; Su XC
    Chemistry; 2013 Jan; 19(3):1097-103. PubMed ID: 23154941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased paramagnetic effect of a lanthanide protein probe by two-point attachment.
    Keizers PH; Desreux JF; Overhand M; Ubbink M
    J Am Chem Soc; 2007 Aug; 129(30):9292-3. PubMed ID: 17608481
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.