These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2828326)

  • 1. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum.
    Driessen AJ; Ubbink-Kok T; Konings WN
    J Bacteriol; 1988 Feb; 170(2):817-20. PubMed ID: 2828326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-driven amino acid uptake in Streptococcus cremoris or Clostridium acetobutylicum membrane vesicles fused with liposomes containing bacterial reaction centers.
    Crielaard W; Driessen AJ; Molenaar D; Hellingwerf KJ; Konings WN
    J Bacteriol; 1988 Apr; 170(4):1820-4. PubMed ID: 2832381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris.
    Driessen AJ; de Vrij W; Konings WN
    Eur J Biochem; 1986 Feb; 154(3):617-24. PubMed ID: 3004984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles.
    Driessen AJ; de Vrij W; Konings WN
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7555-9. PubMed ID: 2999769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH.
    Driessen AJ; Kodde J; de Jong S; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of basic amino acids by membrane vesicles of Lactococcus lactis.
    Driessen AJ; van Leeuwen C; Konings WN
    J Bacteriol; 1989 Mar; 171(3):1453-8. PubMed ID: 2537818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucine transport in plasma membrane vesicles of Saccharomyces cerevisiae.
    Calahorra M; Opekarová M; Ramirez J; Peña A
    FEBS Lett; 1989 Apr; 247(2):235-8. PubMed ID: 2541016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of the proton motive force generated by cytochrome c oxidase from Bacillus subtilis in proteoliposomes and membrane vesicles.
    de Vrij W; Driessen AJ; Hellingwerf KJ; Konings WN
    Eur J Biochem; 1986 Apr; 156(2):431-40. PubMed ID: 3009186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum.
    Hugenholtz J; Ljungdahl LG
    FEMS Microbiol Lett; 1990 May; 57(1-2):117-21. PubMed ID: 2165963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    J Bacteriol; 1996 Jul; 178(14):3991-5. PubMed ID: 8763922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis.
    Smid EJ; Driessen AJ; Konings WN
    J Bacteriol; 1989 Jan; 171(1):292-8. PubMed ID: 2492499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium transport in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; Konings WN
    Eur J Biochem; 1986 Aug; 159(1):149-55. PubMed ID: 3017712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Branched-Chain Amino Acid Transport in Cytoplasmic Membranes of Leuconostoc mesenteroides subsp. dextranicum CNRZ 1273.
    Winters DA; Poolman B; Hemme D; Konings WN
    Appl Environ Microbiol; 1991 Nov; 57(11):3350-4. PubMed ID: 16348591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus.
    Speelmans G; de Vrij W; Konings WN
    J Bacteriol; 1989 Jul; 171(7):3788-95. PubMed ID: 2567728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis.
    In 't Veld G; Driessen AJ; Op den Kamp JA; Konings WN
    Biochim Biophys Acta; 1991 Jun; 1065(2):203-12. PubMed ID: 1905573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and application of a thermostable primary transport system: cytochrome-C oxidase from Bacillus stearothermophilus.
    De Vrij W; Heyne RI; Konings WN
    Eur J Biochem; 1989 Jan; 178(3):763-70. PubMed ID: 2536327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; Hellingwerf KJ; Konings WN
    J Biol Chem; 1987 Sep; 262(26):12438-43. PubMed ID: 3040747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cholesterol on the branched-chain amino acid transport system of Streptococcus cremoris.
    Zheng T; Driessen AJ; Konings WN
    J Bacteriol; 1988 Jul; 170(7):3194-8. PubMed ID: 3384806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.