BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2828327)

  • 1. Regulation of phosphatidylinositol kinase activity in Saccharomyces cerevisiae.
    Holland KM; Homann MJ; Belunis CJ; Carman GM
    J Bacteriol; 1988 Feb; 170(2):828-33. PubMed ID: 2828327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-associated phosphatidylinositol kinase from Saccharomyces cerevisiae.
    McKenzie MA; Carman GM
    J Bacteriol; 1983 Oct; 156(1):421-3. PubMed ID: 6311802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of phosphatidylglycerolphosphate synthase in Saccharomyces cerevisiae by factors affecting mitochondrial development.
    Gaynor PM; Hubbell S; Schmidt AJ; Lina RA; Minskoff SA; Greenberg ML
    J Bacteriol; 1991 Oct; 173(19):6124-31. PubMed ID: 1655699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth.
    Galello F; Pautasso C; Reca S; CaƱonero L; Portela P; Moreno S; Rossi S
    Yeast; 2017 Dec; 34(12):495-508. PubMed ID: 28812308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the 45- and 55-kDa forms of phosphatidylinositol 4-kinase from the yeast Saccharomyces cerevisiae by nucleotides.
    Buxeda RJ; Nickels JT; Carman GM
    J Biol Chem; 1993 Mar; 268(9):6248-55. PubMed ID: 8384205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of phosphatidylinositol kinase from Saccharomyces cerevisiae.
    Belunis CJ; Bae-Lee M; Kelley MJ; Carman GM
    J Biol Chem; 1988 Dec; 263(35):18897-903. PubMed ID: 2848810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol 4-kinase from Saccharomyces cerevisiae. Kinetic analysis using Triton X-100/phosphatidylinositol-mixed micelles.
    Buxeda RJ; Nickels JT; Belunis CJ; Carman GM
    J Biol Chem; 1991 Jul; 266(21):13859-65. PubMed ID: 1649831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of growth phase on phospholipid biosynthesis in Saccharomyces cerevisiae.
    Homann MJ; Poole MA; Gaynor PM; Ho CT; Carman GM
    J Bacteriol; 1987 Feb; 169(2):533-9. PubMed ID: 3027033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes of phosphoinositide synthesis in secretory vesicles destined for the plasma membrane in Saccharomyces cerevisiae.
    Kinney AJ; Carman GM
    J Bacteriol; 1990 Jul; 172(7):4115-7. PubMed ID: 2163397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of a soluble phosphatidylinositol 4-kinase from the yeast Saccharomyces cerevisiae.
    Flanagan CA; Thorner J
    J Biol Chem; 1992 Nov; 267(33):24117-25. PubMed ID: 1331109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose-2,6-bisphosphate metabolism in permeabilized yeast cells.
    Kessler R; Grtner G; Schellenberger W; Hofmann E
    Biomed Biochim Acta; 1991; 50(7):851-60. PubMed ID: 1662044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of yeast phosphatidylserine synthase in vivo and in vitro by cyclic AMP-dependent protein kinase.
    Kinney AJ; Carman GM
    Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7962-6. PubMed ID: 2847149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state.
    Blomberg A; Larsson C; Gustafsson L
    J Bacteriol; 1988 Oct; 170(10):4562-8. PubMed ID: 3049540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol 4-kinase from yeast.
    Carman GM; Belunis CJ; Nickels JT
    Methods Enzymol; 1992; 209():183-9. PubMed ID: 1323031
    [No Abstract]   [Full Text] [Related]  

  • 15. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.
    Murashchenko L; Abbas C; Dmytruk K; Sibirny A
    Yeast; 2016 Aug; 33(8):463-9. PubMed ID: 26990811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit.
    Portela P; Moreno S
    Cell Signal; 2006 Jul; 18(7):1072-86. PubMed ID: 16226873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Tos3, a Snf1 protein kinase kinase, during growth of Saccharomyces cerevisiae on nonfermentable carbon sources.
    Kim MD; Hong SP; Carlson M
    Eukaryot Cell; 2005 May; 4(5):861-6. PubMed ID: 15879520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J; Olsson L; Nielsen J
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.