These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28283522)

  • 1. Use of Bacteria To Stabilize Archaeological Iron.
    Comensoli L; Maillard J; Albini M; Sandoz F; Junier P; Joseph E
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28283522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble and solid iron reduction assays with
    Comensoli L; Maillard J; Kooli WM; Junier P; Joseph E
    Bio Protoc; 2018 Sep; 8(17):e3002. PubMed ID: 34395795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remedial Treatment of Corroded Iron Objects by Environmental
    Kooli WM; Junier T; Shakya M; Monachon M; Davenport KW; Vaideeswaran K; Vernudachi A; Marozau I; Monrouzeau T; Gleasner CD; McMurry K; Lienhard R; Rufener L; Perret JL; Sereda O; Chain PS; Joseph E; Junier P
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Biogenic Passivating Layers on Corroded Iron.
    Comensoli L; Albini M; Kooli W; Maillard J; Lombardo T; Junier P; Joseph E
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects.
    Kooli WM; Comensoli L; Maillard J; Albini M; Gelb A; Junier P; Joseph E
    Sci Rep; 2018 Jan; 8(1):764. PubMed ID: 29335593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion Layers on Archaeological Cast Iron from Nanhai I.
    Jia M; Hu P; Hu G
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of aqueous washing on the ability of βFeOOH to corrode iron.
    Watkinson DE; Emmerson NJ
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2138-2149. PubMed ID: 27164877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions.
    Schütz MK; Schlegel ML; Libert M; Bildstein O
    Environ Sci Technol; 2015 Jun; 49(12):7483-90. PubMed ID: 25988515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water.
    Jin J; Wu G; Guan Y
    Water Res; 2015 Mar; 71():207-18. PubMed ID: 25618521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic magnetite formation through anaerobic biooxidation of Fe(II).
    Chaudhuri SK; Lack JG; Coates JD
    Appl Environ Microbiol; 2001 Jun; 67(6):2844-8. PubMed ID: 11375205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion protection by anaerobiosis.
    Volkland HP; Harms H; Wanner ; Zehnder AJ
    Water Sci Technol; 2001; 44(8):103-6. PubMed ID: 11730124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.
    Enning D; Venzlaff H; Garrelfs J; Dinh HT; Meyer V; Mayrhofer K; Hassel AW; Stratmann M; Widdel F
    Environ Microbiol; 2012 Jul; 14(7):1772-87. PubMed ID: 22616633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1.
    Iino T; Ito K; Wakai S; Tsurumaru H; Ohkuma M; Harayama S
    Appl Environ Microbiol; 2015 Mar; 81(5):1839-46. PubMed ID: 25548048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.
    Schütz MK; Moreira R; Bildstein O; Lartigue JE; Schlegel ML; Tribollet B; Vivier V; Libert M
    Bioelectrochemistry; 2014 Jun; 97():61-8. PubMed ID: 24064199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.
    Sun H; Shi B; Lytle DA; Bai Y; Wang D
    Environ Sci Process Impacts; 2014 Mar; 16(3):576-85. PubMed ID: 24509822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea.
    Kashyap S; Sklute EC; Wang P; Tague TJ; Dyar MD; Holden JF
    Astrobiology; 2023 Jan; 23(1):43-59. PubMed ID: 36070586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface.
    Schlegel ML; Bataillon C; Blanc C; Prêt D; Foy E
    Environ Sci Technol; 2010 Feb; 44(4):1503-8. PubMed ID: 20078101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an analytical procedure for evaluation of the protective behaviour of innovative fungal patinas on archaeological and artistic metal artefacts.
    Joseph E; Simon A; Prati S; Wörle M; Job D; Mazzeo R
    Anal Bioanal Chem; 2011 Mar; 399(9):2899-907. PubMed ID: 20949259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for microbial oxidation of ferrous iron in basaltic glass.
    Xiong MY; Shelobolina ES; Roden EE
    Astrobiology; 2015 May; 15(5):331-40. PubMed ID: 25915449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.