BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28283543)

  • 1. KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk.
    Neverisky DL; Abbott GW
    FASEB J; 2017 Jul; 31(7):2828-2838. PubMed ID: 28283543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMIT1 Modifies KCNQ Channel Function and Pharmacology by Physical Interaction with the Pore.
    Manville RW; Neverisky DL; Abbott GW
    Biophys J; 2017 Aug; 113(3):613-626. PubMed ID: 28793216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channels act as chemosensors for solute transporters.
    Manville RW; Abbott GW
    Commun Biol; 2020 Feb; 3(1):90. PubMed ID: 32111967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SMIT (Sodium-Myo-Inositol Transporter) 1 Regulates Arterial Contractility Through the Modulation of Vascular Kv7 Channels.
    Barrese V; Stott JB; Baldwin SN; Mondejar-Parreño G; Greenwood IA
    Arterioscler Thromb Vasc Biol; 2020 Oct; 40(10):2468-2480. PubMed ID: 32787517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels.
    Dai G; Yu H; Kruse M; Traynor-Kaplan A; Hille B
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):E3290-9. PubMed ID: 27217553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability.
    Abbott GW; Tai KK; Neverisky DL; Hansler A; Hu Z; Roepke TK; Lerner DJ; Chen Q; Liu L; Zupan B; Toth M; Haynes R; Huang X; Demirbas D; Buccafusca R; Gross SS; Kanda VA; Berry GT
    Sci Signal; 2014 Mar; 7(315):ra22. PubMed ID: 24595108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Amyloid Precursor Protein C99 Fragment Modulates Voltage-Gated Potassium Channels.
    Manville RW; Abbott GW
    Cell Physiol Biochem; 2021 Jul; 55(S3):157-170. PubMed ID: 34318654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH.
    Fu H; Li B; Hertz L; Peng L
    Neurochem Int; 2012 Jul; 61(2):187-94. PubMed ID: 22564531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel Na+/myo-inositol cotransporter.
    Coady MJ; Wallendorff B; Gagnon DG; Lapointe JY
    J Biol Chem; 2002 Sep; 277(38):35219-24. PubMed ID: 12133831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT.
    Bourgeois F; Coady MJ; Lapointe JY
    J Physiol; 2005 Mar; 563(Pt 2):333-43. PubMed ID: 15613375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2.
    Ekberg J; Schuetz F; Boase NA; Conroy SJ; Manning J; Kumar S; Poronnik P; Adams DJ
    J Biol Chem; 2007 Apr; 282(16):12135-42. PubMed ID: 17322297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of extracellular pH on the myo-inositol transporter SMIT expressed in Xenopus oocytes.
    Matskevitch J; Wagner CA; Risler T; Kwon HM; Handler JS; Waldegger S; Busch AE; Lang F
    Pflugers Arch; 1998 Nov; 436(6):854-7. PubMed ID: 9799398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1.
    Klaus F; Palmada M; Lindner R; Laufer J; Jeyaraj S; Lang F; Boehmer C
    J Physiol; 2008 Mar; 586(6):1539-47. PubMed ID: 18202099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the sodium-myo-inositol cotransporter SMIT2 at the apical membrane of Madin-Darby canine kidney cells.
    Bissonnette P; Coady MJ; Lapointe JY
    J Physiol; 2004 Aug; 558(Pt 3):759-68. PubMed ID: 15181167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCNQ2 is a nodal K+ channel.
    Devaux JJ; Kleopa KA; Cooper EC; Scherer SS
    J Neurosci; 2004 Feb; 24(5):1236-44. PubMed ID: 14762142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of myo-inositol cotransporters in the sciatic nerve and dorsal root ganglia in experimental diabetes.
    Farias VX; Uchoa PN; Aquino CP; Britto LRG; Fonteles MC; Leal-Cardoso JH; Silva-Alves KS; Havt A; Prata MMG; Heimark DB; Nascimento NRF; Santos CF
    Braz J Med Biol Res; 2019; 52(6):e8589. PubMed ID: 31166385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium/myo-Inositol transporters: substrate transport requirements and regional brain expression in the TgCRND8 mouse model of amyloid pathology.
    Fenili D; Weng YQ; Aubert I; Nitz M; McLaurin J
    PLoS One; 2011; 6(8):e24032. PubMed ID: 21887366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression.
    Kim HJ; Jeong MH; Kim KR; Jung CY; Lee SY; Kim H; Koh J; Vuong TA; Jung S; Yang H; Park SK; Choi D; Kim SH; Kang K; Sohn JW; Park JM; Jeon D; Koo SH; Ho WK; Kang JS; Kim ST; Cho H
    Elife; 2016 Jul; 5():. PubMed ID: 27466704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hyperosmolarity on the Na+ -myo-inositol cotransporter SMIT2 stably transfected in the Madin-Darby canine kidney cell line.
    Bissonnette P; Lahjouji K; Coady MJ; Lapointe JY
    Am J Physiol Cell Physiol; 2008 Sep; 295(3):C791-9. PubMed ID: 18650262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains.
    Chung HJ; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8870-5. PubMed ID: 16735477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.