These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 28283680)
21. Multi-locus sequence typing and virulence profile in Bianco A; Capozzi L; Miccolupo A; Iannetti S; Danzetta ML; Del Sambro L; Caruso M; Santagada G; Parisi A Ital J Food Saf; 2020 Dec; 9(4):8401. PubMed ID: 33532366 [TBL] [Abstract][Full Text] [Related]
22. [Detection of some toxin genes related to pathogenicity in Bacillus cereus group strains]. Hu XM; Cai YJ; Zhou GP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):392-5. PubMed ID: 17672293 [TBL] [Abstract][Full Text] [Related]
23. Detection and expression of enterotoxin genes in endophytic strains of Bacillus cereus. Melnick RL; Testen AL; Poleatewich AM; Backman PA; Bailey BA Lett Appl Microbiol; 2012 May; 54(5):468-74. PubMed ID: 22394121 [TBL] [Abstract][Full Text] [Related]
24. Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA. Zhu K; Didier A; Dietrich R; Heilkenbrinker U; Waltenberger E; Jessberger N; Märtlbauer E; Benz R Biochem Biophys Res Commun; 2016 Jan; 469(3):613-8. PubMed ID: 26654951 [TBL] [Abstract][Full Text] [Related]
25. Potential Enterotoxicity of Phylogenetically Diverse Bacillus cereus Sensu Lato Soil Isolates from Different Geographical Locations. Drewnowska JM; Stefanska N; Czerniecka M; Zambrowski G; Swiecicka I Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220844 [No Abstract] [Full Text] [Related]
26. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, Isolated from food, environmental, and clinical samples by multiplex PCR. Forghani F; Kim JB; Oh DH J Food Sci; 2014 Nov; 79(11):M2288-93. PubMed ID: 25311736 [TBL] [Abstract][Full Text] [Related]
27. [Preliminary application of next generation sequencing technique in pathogen identification of foodborne disease]. Wang HQ; Yu H; Zheng W; Zhang W; Liu T; Lou XQ; Huang CP; Huang LM; Shen LM; Pan JC Zhonghua Yu Fang Yi Xue Za Zhi; 2018 Jun; 52(6):647-652. PubMed ID: 29886688 [No Abstract] [Full Text] [Related]
28. Detection of enterotoxic Bacillus cereus producing hemolytic and non hemolytic enterotoxins by PCR test. Ołtuszak-Walczak E; Walczak P; Modrak R Pol J Microbiol; 2006; 55(2):113-8. PubMed ID: 17419288 [TBL] [Abstract][Full Text] [Related]
29. Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. Kovac J; Miller RA; Carroll LM; Kent DJ; Jian J; Beno SM; Wiedmann M BMC Genomics; 2016 Aug; 17():581. PubMed ID: 27507015 [TBL] [Abstract][Full Text] [Related]
30. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Ehling-Schulz M; Svensson B; Guinebretiere MH; Lindbäck T; Andersson M; Schulz A; Fricker M; Christiansson A; Granum PE; Märtlbauer E; Nguyen-The C; Salkinoja-Salonen M; Scherer S Microbiology (Reading); 2005 Jan; 151(Pt 1):183-197. PubMed ID: 15632437 [TBL] [Abstract][Full Text] [Related]
31. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Ankolekar C; Rahmati T; Labbé RG Int J Food Microbiol; 2009 Jan; 128(3):460-6. PubMed ID: 19027973 [TBL] [Abstract][Full Text] [Related]
32. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba. Ahaotu I; Anyogu A; Njoku OH; Odu NN; Sutherland JP; Ouoba LI Int J Food Microbiol; 2013 Mar; 162(1):95-104. PubMed ID: 23376783 [TBL] [Abstract][Full Text] [Related]
33. Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Swiecicka I; Van der Auwera GA; Mahillon J Microb Ecol; 2006 Oct; 52(3):544-51. PubMed ID: 16944343 [TBL] [Abstract][Full Text] [Related]
34. Detection of Bacillus cereus virulence factors in commercial products of Bacillus thuringiensis and expression of diarrheal enterotoxins in a target insect. Kyei-Poku G; Gauthier D; Pang A; van Frankenhuyzen K Can J Microbiol; 2007 Dec; 53(12):1283-90. PubMed ID: 18059560 [TBL] [Abstract][Full Text] [Related]
35. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Lapidus A; Goltsman E; Auger S; Galleron N; Ségurens B; Dossat C; Land ML; Broussolle V; Brillard J; Guinebretiere MH; Sanchis V; Nguen-The C; Lereclus D; Richardson P; Wincker P; Weissenbach J; Ehrlich SD; Sorokin A Chem Biol Interact; 2008 Jan; 171(2):236-49. PubMed ID: 17434157 [TBL] [Abstract][Full Text] [Related]
37. Whole-genome sequence-based comparison and profiling of virulence-associated genes of Bacillus cereus group isolates from diverse sources in Japan. Okutani A; Inoue S; Noguchi A; Kaku Y; Morikawa S BMC Microbiol; 2019 Dec; 19(1):296. PubMed ID: 31842760 [TBL] [Abstract][Full Text] [Related]
38. Sequence diversity of the Bacillus thuringiensis and B. cereus sensu lato flagellin (H antigen) protein: comparison with H serotype diversity. Xu D; Côté JC Appl Environ Microbiol; 2006 Jul; 72(7):4653-62. PubMed ID: 16820457 [TBL] [Abstract][Full Text] [Related]
39. Formation of very large conductance channels by Bacillus cereus Nhe in Vero and GH(4) cells identifies NheA + B as the inherent pore-forming structure. Haug TM; Sand SL; Sand O; Phung D; Granum PE; Hardy SP J Membr Biol; 2010 Sep; 237(1):1-11. PubMed ID: 20821199 [TBL] [Abstract][Full Text] [Related]
40. Toxic potential of Bacillus cereus isolated from fermented alcoholic beverages. Kim SA; Park HJ; Cho TJ; Rhee MS Food Res Int; 2020 Nov; 137():109361. PubMed ID: 33233064 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]