BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28283950)

  • 1. Caveolin-1 in the Pathogenesis of Diabetic Nephropathy: Potential Therapeutic Target?
    Van Krieken R; Krepinsky JC
    Curr Diab Rep; 2017 Mar; 17(3):19. PubMed ID: 28283950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caveolin-1 deficiency protects against mesangial matrix expansion in a mouse model of type 1 diabetic nephropathy.
    Guan TH; Chen G; Gao B; Janssen MR; Uttarwar L; Ingram AJ; Krepinsky JC
    Diabetologia; 2013 Sep; 56(9):2068-77. PubMed ID: 23793581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caveolae and caveolin in transmembrane signaling: Implications for human disease.
    Schwencke C; Braun-Dullaeus RC; Wunderlich C; Strasser RH
    Cardiovasc Res; 2006 Apr; 70(1):42-9. PubMed ID: 16412403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From embryonic development to human diseases: The functional role of caveolae/caveolin.
    Sohn J; Brick RM; Tuan RS
    Birth Defects Res C Embryo Today; 2016 Mar; 108(1):45-64. PubMed ID: 26991990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The caveolin-1 regulated protein follistatin protects against diabetic kidney disease.
    Zhang D; Gava AL; Van Krieken R; Mehta N; Li R; Gao B; Desjardins EM; Steinberg GR; Hawke T; Krepinsky JC
    Kidney Int; 2019 Nov; 96(5):1134-1149. PubMed ID: 31492508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats.
    Su W; Zhang Y; Zhang Q; Xu J; Zhan L; Zhu Q; Lian Q; Liu H; Xia ZY; Xia Z; Lei S
    Cardiovasc Diabetol; 2016 Oct; 15(1):146. PubMed ID: 27733157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of caveolae in high glucose and TGF-β₁ induced fibronectin production in rat mesangial cells.
    Liu Y; Lu S; Zhang Y; Wang X; Kong F; Liu Y; Peng L; Fu Y
    Int J Clin Exp Pathol; 2014; 7(12):8381-90. PubMed ID: 25674202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal Models of Light Chain Deposition Disease Provide a Better Understanding of Nodular Glomerulosclerosis.
    Herrera GA; Turbat-Herrera EA; Teng J
    Nephron; 2016; 132(2):119-36. PubMed ID: 26794829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localisation: an in vivo study.
    Kiss AL; Turi A; Müllner N; Kovács E; Botos E; Greger A
    Mol Cell Endocrinol; 2005 Dec; 245(1-2):128-37. PubMed ID: 16368181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src.
    Wu T; Zhang B; Ye F; Xiao Z
    Am J Physiol Renal Physiol; 2013 Mar; 304(6):F820-30. PubMed ID: 23269647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caveolin-1: a tumor-promoting role in human cancer.
    Shatz M; Liscovitch M
    Int J Radiat Biol; 2008 Mar; 84(3):177-89. PubMed ID: 18300018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway.
    Ji X; Li C; Ou Y; Li N; Yuan K; Yang G; Chen X; Yang Z; Liu B; Cheung WW; Wang L; Huang R; Lan T
    Mol Cell Endocrinol; 2016 Dec; 437():268-279. PubMed ID: 27378149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caveolin-1 as a potential new therapeutic target in multiple myeloma.
    Podar K; Anderson KC
    Cancer Lett; 2006 Feb; 233(1):10-5. PubMed ID: 16473666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update.
    Arora MK; Singh UK
    Vascul Pharmacol; 2013 Apr; 58(4):259-71. PubMed ID: 23313806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blocking VEGF/Caveolin-1 signaling contributes to renal protection of fasudil in streptozotocin-induced diabetic rats.
    Jin J; Peng C; Wu SZ; Chen HM; Zhang BF
    Acta Pharmacol Sin; 2015 Jul; 36(7):831-40. PubMed ID: 25937636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
    Elmarakby AA; Sullivan JC
    Cardiovasc Ther; 2012 Feb; 30(1):49-59. PubMed ID: 20718759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smooth muscle caveolae differentially regulate specific agonist induced bladder contractions.
    Cristofaro V; Peters CA; Yalla SV; Sullivan MP
    Neurourol Urodyn; 2007; 26(1):71-80. PubMed ID: 17123298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy.
    Ha H; Hwang IA; Park JH; Lee HB
    Diabetes Res Clin Pract; 2008 Nov; 82 Suppl 1():S42-5. PubMed ID: 18845352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension.
    Patel HH; Zhang S; Murray F; Suda RY; Head BP; Yokoyama U; Swaney JS; Niesman IR; Schermuly RT; Pullamsetti SS; Thistlethwaite PA; Miyanohara A; Farquhar MG; Yuan JX; Insel PA
    FASEB J; 2007 Sep; 21(11):2970-9. PubMed ID: 17470567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factors in the pathogenesis of diabetic nephropathy.
    Sanchez AP; Sharma K
    Expert Rev Mol Med; 2009 Apr; 11():e13. PubMed ID: 19397838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.