BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28284346)

  • 1. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.
    Bhandage AK; Jin Z; Hellgren C; Korol SV; Nowak K; Williamsson L; Sundström-Poromaa I; Birnir B
    J Neuroimmunol; 2017 Apr; 305():51-58. PubMed ID: 28284346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum.
    Atoji Y; Sarkar S
    J Chem Neuroanat; 2019 Jul; 98():71-79. PubMed ID: 30978490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression of ionotropic glutamate receptor subunits in the tectofugal pathway of the pigeon.
    Atoji Y
    Neuroscience; 2016 Mar; 316():367-77. PubMed ID: 26718600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of ionotropic glutamate receptors, AMPA, kainite and NMDA, in the pigeon retina.
    Atoji Y
    Exp Eye Res; 2015 Jul; 136():72-7. PubMed ID: 25983186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.
    Watanabe-Iida I; Konno K; Akashi K; Abe M; Natsume R; Watanabe M; Sakimura K
    J Neurochem; 2016 Jan; 136(2):295-305. PubMed ID: 26448475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health.
    Bhandage AK; Hellgren C; Jin Z; Olafsson EB; Sundström-Poromaa I; Birnir B
    Acta Physiol (Oxf); 2015 Mar; 213(3):575-85. PubMed ID: 25529063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression of AMPA, kainate, and NMDA receptor subunits in the pigeon spinal cord.
    Atoji Y; Sarkar S
    J Chem Neuroanat; 2019 Mar; 96():148-156. PubMed ID: 30529749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus.
    Ibrahim HM; Healy DJ; Hogg AJ; Meador-Woodruff JH
    Brain Res Mol Brain Res; 2000 Jun; 79(1-2):1-17. PubMed ID: 10925139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical localization of ionotropic glutamate receptors in the rat red nucleus.
    Minbay Z; Serter Kocoglu S; Gok Yurtseven D; Eyigor O
    Bosn J Basic Med Sci; 2017 Feb; 17(1):29-37. PubMed ID: 28027456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective increases of AMPA, NMDA, and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics.
    Jin Z; Bhandage AK; Bazov I; Kononenko O; Bakalkin G; Korpi ER; Birnir B
    Front Cell Neurosci; 2014; 8():11. PubMed ID: 24523671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subunit-specific desensitization of heteromeric kainate receptors.
    Mott DD; Rojas A; Fisher JL; Dingledine RJ; Benveniste M
    J Physiol; 2010 Feb; 588(Pt 4):683-700. PubMed ID: 20026616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of homomeric and heteromeric kainate receptors by the auxiliary subunit Neto1.
    Fisher JL; Mott DD
    J Physiol; 2013 Oct; 591(19):4711-24. PubMed ID: 23798491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors.
    Fisher MT; Fisher JL
    Neuroscience; 2014 Oct; 278():70-80. PubMed ID: 25139762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine agonism in ionotropic glutamate receptors.
    Stroebel D; Mony L; Paoletti P
    Neuropharmacology; 2021 Aug; 193():108631. PubMed ID: 34058193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating and permeation of kainate receptors: differences unveiled.
    Perrais D; Veran J; Mulle C
    Trends Pharmacol Sci; 2010 Nov; 31(11):516-22. PubMed ID: 20850188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors.
    Sibarov DA; Giniatullin R; Antonov SM
    Biochem Biophys Res Commun; 2018 Nov; 506(3):648-652. PubMed ID: 30454701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors.
    Cameron K; Bartle E; Roark R; Fanelli D; Pham M; Pollard B; Borkowski B; Rhoads S; Kim J; Rocha M; Kahlson M; Kangala M; Gentile L
    Steroids; 2012 Jun; 77(7):774-9. PubMed ID: 22504555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In the Telencephalon, GluN2C NMDA Receptor Subunit mRNA is Predominately Expressed in Glial Cells and GluN2D mRNA in Interneurons.
    Alsaad HA; DeKorver NW; Mao Z; Dravid SM; Arikkath J; Monaghan DT
    Neurochem Res; 2019 Jan; 44(1):61-77. PubMed ID: 29651654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that functional glutamate receptors are not expressed on rat or human cerebromicrovascular endothelial cells.
    Morley P; Small DL; Murray CL; Mealing GA; Poulter MO; Durkin JP; Stanimirovic DB
    J Cereb Blood Flow Metab; 1998 Apr; 18(4):396-406. PubMed ID: 9538905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexually dimorphic long-term effects of an early life experience on AMPA receptor subunit expression in rat brain.
    Katsouli S; Stamatakis A; Giompres P; Kouvelas ED; Stylianopoulou F; Mitsacos A
    Neuroscience; 2014 Jan; 257():49-64. PubMed ID: 24211798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.