These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28284667)

  • 41. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does the type of visual feedback information change the control of standing balance?
    Dos Anjos F; Lemos T; Imbiriba LA
    Eur J Appl Physiol; 2016 Sep; 116(9):1771-9. PubMed ID: 27431210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autobiographically recalled emotional states impact forward gait initiation as a function of motivational direction.
    Fawver B; Hass CJ; Park KD; Janelle CM
    Emotion; 2014 Dec; 14(6):1125-36. PubMed ID: 25151514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of the aquatic environment on the center of pressure, impulses and upper and lower trunk accelerations during gait initiation.
    Marinho-Buzelli AR; Masani K; Rouhani H; Barela AM; Fernandes GTB; Verrier MC; Popovic MR
    Gait Posture; 2017 Oct; 58():469-475. PubMed ID: 28923661
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Center of pressure excursion and muscle activation during gait initiation in individuals with and without chronic ankle instability.
    Yousefi M; Sadeghi H; Ilbiegi S; Ebrahimabadi Z; Kakavand M; Wikstrom EA
    J Biomech; 2020 Jul; 108():109904. PubMed ID: 32636013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation of postural orientation to changes in surface inclination.
    Kluzik J; Peterka RJ; Horak FB
    Exp Brain Res; 2007 Mar; 178(1):1-17. PubMed ID: 17039357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Keep on your toes: gait initiation from toe-standing.
    Nolan L; Kerrigan DC
    J Biomech; 2003 Mar; 36(3):393-401. PubMed ID: 12594987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):465-70. PubMed ID: 19111469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gait stability, variability and complexity on inclined surfaces.
    Vieira MF; Rodrigues FB; de Sá E Souza GS; Magnani RM; Lehnen GC; Campos NG; Andrade AO
    J Biomech; 2017 Mar; 54():73-79. PubMed ID: 28233553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking.
    Yamaguchi T; Yano M; Onodera H; Hokkirigawa K
    Gait Posture; 2013 Jun; 38(2):209-14. PubMed ID: 23218767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vector coding reveals the underlying balance control strategies used by humans during translational perturbation.
    Taleshi N; Brownjohn JMW; Lamb SE; Zivanovic S; Williams GKR
    Sci Rep; 2022 Dec; 12(1):21030. PubMed ID: 36470936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gait initiation and dynamic balance control in Parkinson's disease.
    Hass CJ; Waddell DE; Fleming RP; Juncos JL; Gregor RJ
    Arch Phys Med Rehabil; 2005 Nov; 86(11):2172-6. PubMed ID: 16271566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-task effect on gait balance control in adolescents with concussion.
    Howell DR; Osternig LR; Chou LS
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1513-20. PubMed ID: 23643687
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of long-term wearing of high-heeled shoes on the control of the body's center of mass motion in relation to the center of pressure during walking.
    Chien HL; Lu TW; Liu MW
    Gait Posture; 2014 Apr; 39(4):1045-50. PubMed ID: 24508016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance.
    Thompson C; Bélanger M; Fung J
    Hum Mov Sci; 2011 Apr; 30(2):153-71. PubMed ID: 20580112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diabetic neuropathy and surface sway-referencing disrupt somatosensory information for postural stability in stance.
    Horak FB; Dickstein R; Peterka RJ
    Somatosens Mot Res; 2002; 19(4):316-26. PubMed ID: 12590833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle.
    Vuillerme N; Bertrand R; Pinsault N
    Arch Phys Med Rehabil; 2008 Oct; 89(10):2034-6. PubMed ID: 18929035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decreased Anticipatory Postural Adjustments During Gait Initiation Acutely Postconcussion.
    Buckley TA; Oldham JR; Munkasy BA; Evans KM
    Arch Phys Med Rehabil; 2017 Oct; 98(10):1962-1968. PubMed ID: 28583462
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of sagittal center of pressure offset on gait kinematics and kinetics.
    Haim A; Rozen N; Wolf A
    J Biomech; 2010 Mar; 43(5):969-77. PubMed ID: 20047747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time and Frequency Domain Analysis of Gait Initiation in Younger and Older Adults.
    Khanmohammadi R; Talebian S; Hadian MR; Olyaei G; Bagheri H
    J Aging Phys Act; 2017 Apr; 25(2):212-217. PubMed ID: 27622922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.