BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28284765)

  • 1. Effect of mass overloading on binding and elution of unstable proteins in hydrophobic interaction chromatography.
    Muca R; Marek W; Żurawski M; Piątkowski W; Antos D
    J Chromatogr A; 2017 Apr; 1492():79-88. PubMed ID: 28284765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of negative and positive cooperative adsorption of proteins on hydrophobic interaction chromatography media.
    Muca R; Kołodziej M; Piątkowski W; Carta G; Antos D
    J Chromatogr A; 2020 Aug; 1625():461309. PubMed ID: 32709351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loading, stationary phase, and salt effects during hydrophobic interaction chromatography: alpha-lactalbumin is stabilized at high loadings.
    Fogle JL; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2006 Jul; 1121(2):209-18. PubMed ID: 16690064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention.
    Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt.
    Mirani MR; Rahimpour F
    J Chromatogr A; 2015 Nov; 1422():170-177. PubMed ID: 26493472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic interaction chromatography of proteins: Studies of unfolding upon adsorption by isothermal titration calorimetry.
    Rodler A; Beyer B; Ueberbacher R; Hahn R; Jungbauer A
    J Sep Sci; 2018 Aug; 41(15):3069-3080. PubMed ID: 29877629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in solvent exposure reveal the kinetics and equilibria of adsorbed protein unfolding in hydrophobic interaction chromatography.
    Deitcher RW; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2010 Aug; 1217(35):5571-83. PubMed ID: 20630532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography.
    Muca R; Marek W; Piatkowski W; Antos D
    J Chromatogr A; 2010 Apr; 1217(17):2812-20. PubMed ID: 20236645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.
    Gospodarek AM; Hiser DE; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2014 Aug; 1355():238-52. PubMed ID: 24997510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance liquid chromatography as a technique to determine protein adsorption onto hydrophilic/hydrophobic surfaces.
    Huang T; Anselme K; Sarrailh S; Ponche A
    Int J Pharm; 2016 Jan; 497(1-2):54-61. PubMed ID: 26621686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein instability during HIC: evidence of unfolding reversibility, and apparent adsorption strength of disulfide bond-reduced alpha-lactalbumin variants.
    Deitcher RW; Xiao Y; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2009 Apr; 102(5):1416-27. PubMed ID: 19152385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming solubility limits in overloaded gradient hydrophobic interaction chromatography.
    Poplewska I; Piątkowski W; Antos D
    J Chromatogr A; 2015 Mar; 1386():1-12. PubMed ID: 25687455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.
    Gospodarek AM; Sun W; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2014 Dec; 1371():204-19. PubMed ID: 25456599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein stability and structure in HIC: hydrogen exchange experiments and COREX calculations.
    Gospodarek AM; Smatlak ME; O'Connell JP; Fernandez EJ
    Langmuir; 2011 Jan; 27(1):286-95. PubMed ID: 21117672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic interaction chromatography of proteins. III. Unfolding of proteins upon adsorption.
    Jungbauer A; Machold C; Hahn R
    J Chromatogr A; 2005 Jun; 1079(1-2):221-8. PubMed ID: 16038308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotherm type shift of hydrophobic interaction adsorption and its effect on chromatographic behavior.
    Meng Q; Wang J; Ma G; Su Z
    J Chromatogr Sci; 2013 Feb; 51(2):173-80. PubMed ID: 22815210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of hydrophobic interaction chromatography using a mathematical model of elution curves of a protein mixture.
    Lienqueo ME; Shene C; Asenjo J
    J Mol Recognit; 2009; 22(2):110-20. PubMed ID: 18979460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    J Chromatogr A; 2017 Oct; 1521():73-79. PubMed ID: 28947205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salts and temperature on the adsorption of bovine serum albumin on polypropylene glycol-Sepharose under linear and overloaded chromatographic conditions.
    Dias-Cabral AC; Queiroz JA; Pinto NG
    J Chromatogr A; 2003 Nov; 1018(2):137-53. PubMed ID: 14620566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.