These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28285103)

  • 1. Alkaline textile wastewater biotreatment: A sulfate-reducing granular sludge based lab-scale study.
    Zeng Q; Hao T; Mackey HR; Wei L; Guo G; Chen G
    J Hazard Mater; 2017 Jun; 332():104-111. PubMed ID: 28285103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor.
    Ozdemir S; Cirik K; Akman D; Sahinkaya E; Cinar O
    Bioresour Technol; 2013 Oct; 146():135-143. PubMed ID: 23933020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated nanofiltration and upflow anaerobic sludge blanket treatment of textile wastewater for in-plant reuse.
    Gomes AC; Gonçalves IC; de Pinho MN; Porter JJ
    Water Environ Res; 2007 May; 79(5):498-506. PubMed ID: 17571839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sulfate-reducing granular sludge in the SANI(®) process.
    Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G
    Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of granular sludge for textile wastewater treatment.
    Muda K; Aris A; Salim MR; Ibrahim Z; Yahya A; van Loosdrecht MC; Ahmad A; Nawahwi MZ
    Water Res; 2010 Aug; 44(15):4341-50. PubMed ID: 20580402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.
    Byun IG; Lee TH; Kim YO; Song SK; Park TJ
    Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor.
    Li J; Wang J; Luan Z; Ji Z; Yu L
    J Environ Sci (China); 2012; 24(2):343-50. PubMed ID: 22655398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Aerobic granular sludge for simultaneous COD and nitrogen removal at high carbon and nitrogen loading rates].
    Zhao YG; Huang J; Yang H
    Huan Jing Ke Xue; 2011 Nov; 32(11):3405-11. PubMed ID: 22295642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of disperse dyes from textile wastewater using bio-sludge.
    Sirianuntapiboon S; Srisornsak P
    Bioresour Technol; 2007 Mar; 98(5):1057-66. PubMed ID: 16797981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI® process.
    Hao T; Luo J; Wei L; Mackey HR; Liu R; Rey Morito G; Chen GH
    Water Res; 2015 Mar; 71():74-84. PubMed ID: 25600299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the start-up of the anaerobic baffled reactor for treating alkali-deweighting and dyeing-printing wastewater].
    Yang B; Zhong QJ; Li F; Tian Q
    Huan Jing Ke Xue; 2013 Mar; 34(3):968-73. PubMed ID: 23745402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage.
    Deng D; Weidhaas JL; Lin LS
    J Hazard Mater; 2016 Mar; 305():200-208. PubMed ID: 26686479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ORP, recycling rate, and HRT on simultaneous sulfate reduction and sulfur production in expanded granular sludge bed (EGSB) reactors under micro-aerobic conditions for treating molasses distillery wastewater.
    Qinglin X; Yanhong L; Shaoyuan B; Hongda J
    Water Sci Technol; 2012; 66(6):1253-62. PubMed ID: 22828303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of ethanol on sulfate reduction and methanogenesis].
    Wang Q; Liu B; Yan DD; Li S; Chen ZZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):924-9. PubMed ID: 19432352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.