These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 28285134)
1. Loss of Gspt1l disturbs the patterning of the brain central arteries in zebrafish. Wang H; Luo L; Yang D Biochem Biophys Res Commun; 2017 Apr; 486(1):156-162. PubMed ID: 28285134 [TBL] [Abstract][Full Text] [Related]
2. Assembly and patterning of the vascular network of the vertebrate hindbrain. Fujita M; Cha YR; Pham VN; Sakurai A; Roman BL; Gutkind JS; Weinstein BM Development; 2011 May; 138(9):1705-15. PubMed ID: 21429985 [TBL] [Abstract][Full Text] [Related]
3. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Koenig AL; Baltrunaite K; Bower NI; Rossi A; Stainier DY; Hogan BM; Sumanas S Dev Biol; 2016 Mar; 411(1):115-27. PubMed ID: 26769101 [TBL] [Abstract][Full Text] [Related]
4. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Bussmann J; Wolfe SA; Siekmann AF Development; 2011 May; 138(9):1717-26. PubMed ID: 21429983 [TBL] [Abstract][Full Text] [Related]
5. Vegfa signaling regulates diverse artery/vein formation in vertebrate vasculatures. Jin D; Zhu D; Fang Y; Chen Y; Yu G; Pan W; Liu D; Li F; Zhong TP J Genet Genomics; 2017 Oct; 44(10):483-492. PubMed ID: 29037991 [TBL] [Abstract][Full Text] [Related]
6. Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Castranova D; Davis AE; Lo BD; Miller MF; Paukstelis PJ; Swift MR; Pham VN; Torres-Vázquez J; Bell K; Shaw KM; Kamei M; Weinstein BM Arterioscler Thromb Vasc Biol; 2016 Apr; 36(4):655-62. PubMed ID: 26821951 [TBL] [Abstract][Full Text] [Related]
7. βPix plays a dual role in cerebral vascular stability and angiogenesis, and interacts with integrin αvβ8. Liu J; Zeng L; Kennedy RM; Gruenig NM; Childs SJ Dev Biol; 2012 Mar; 363(1):95-105. PubMed ID: 22206757 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Sry-related HMG box group F genes in zebrafish hematopoiesis. Chung MI; Ma AC; Fung TK; Leung AY Exp Hematol; 2011 Oct; 39(10):986-998.e5. PubMed ID: 21726513 [TBL] [Abstract][Full Text] [Related]
9. Semaphorin-plexin signaling guides patterning of the developing vasculature. Torres-Vázquez J; Gitler AD; Fraser SD; Berk JD; Van N Pham ; Fishman MC; Childs S; Epstein JA; Weinstein BM Dev Cell; 2004 Jul; 7(1):117-23. PubMed ID: 15239959 [TBL] [Abstract][Full Text] [Related]
10. Secretogranin-II plays a critical role in zebrafish neurovascular modeling. Tao B; Hu H; Mitchell K; Chen J; Jia H; Zhu Z; Trudeau VL; Hu W J Mol Cell Biol; 2018 Oct; 10(5):388-401. PubMed ID: 29757409 [TBL] [Abstract][Full Text] [Related]
11. Clec14a genetically interacts with Etv2 and Vegf signaling during vasculogenesis and angiogenesis in zebrafish. Pociute K; Schumacher JA; Sumanas S BMC Dev Biol; 2019 Apr; 19(1):6. PubMed ID: 30953479 [TBL] [Abstract][Full Text] [Related]
12. Ftr82 Is Critical for Vascular Patterning during Zebrafish Development. Chang HW; Wang WD; Chiu CC; Chen CH; Wang YS; Chen ZY; Liu W; Tai MH; Wen ZH; Wu CY Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098794 [TBL] [Abstract][Full Text] [Related]
13. Sox7 controls arterial specification in conjunction with hey2 and efnb2 function. Hermkens DM; van Impel A; Urasaki A; Bussmann J; Duckers HJ; Schulte-Merker S Development; 2015 May; 142(9):1695-704. PubMed ID: 25834021 [TBL] [Abstract][Full Text] [Related]
14. The expression of glia maturation factors and the effect of glia maturation factor-γ on angiogenic sprouting in zebrafish. Zuo P; Fu Z; Tao T; Ye F; Chen L; Wang X; Lu W; Xie X Exp Cell Res; 2013 Mar; 319(5):707-17. PubMed ID: 23333559 [TBL] [Abstract][Full Text] [Related]
15. Noncanonical function of threonyl-tRNA synthetase regulates vascular development in zebrafish. Cao Z; Wang H; Mao X; Luo L Biochem Biophys Res Commun; 2016 Apr; 473(1):67-72. PubMed ID: 26993167 [TBL] [Abstract][Full Text] [Related]
16. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression. Becker PW; Sacilotto N; Nornes S; Neal A; Thomas MO; Liu K; Preece C; Ratnayaka I; Davies B; Bou-Gharios G; De Val S Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1209-19. PubMed ID: 27079877 [TBL] [Abstract][Full Text] [Related]
17. The heparan sulfate editing enzyme Sulf1 plays a novel role in zebrafish VegfA mediated arterial venous identity. Gorsi B; Liu F; Ma X; Chico TJ; v A; Kramer KL; Bridges E; Monteiro R; Harris AL; Patient R; Stringer SE Angiogenesis; 2014 Jan; 17(1):77-91. PubMed ID: 23959107 [TBL] [Abstract][Full Text] [Related]
18. Noncanonical activity of seryl-transfer RNA synthetase and vascular development. Kawahara A; Stainier DY Trends Cardiovasc Med; 2009 Aug; 19(6):179-82. PubMed ID: 20211432 [TBL] [Abstract][Full Text] [Related]
19. Ocular vessel patterning in zebrafish is indirectly regulated by Hedgehog signaling. Weiss O; Kaufman R; Mishani E; Inbal A Int J Dev Biol; 2017; 61(3-4-5):277-284. PubMed ID: 28621424 [TBL] [Abstract][Full Text] [Related]
20. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Hernandez RE; Rikhof HA; Bachmann R; Moens CB Development; 2004 Sep; 131(18):4511-20. PubMed ID: 15342476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]