BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28285200)

  • 21. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.
    Biffinger JC; Ray R; Little BJ; Fitzgerald LA; Ribbens M; Finkel SE; Ringeisen BR
    Biotechnol Bioeng; 2009 Jun; 103(3):524-31. PubMed ID: 19189395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Shewanella biofilm promotes bioelectricity generation.
    Liu T; Yu YY; Deng XP; Ng CK; Cao B; Wang JY; Rice SA; Kjelleberg S; Song H
    Biotechnol Bioeng; 2015 Oct; 112(10):2051-9. PubMed ID: 25899863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Advances in electrochemically active biofilm of
    Jiang M; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):881-897. PubMed ID: 36994560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
    Rosenbaum M; Cotta MA; Angenent LT
    Biotechnol Bioeng; 2010 Apr; 105(5):880-8. PubMed ID: 19998276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Syst Appl Microbiol; 2015 Mar; 38(2):135-9. PubMed ID: 25523930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.
    Xafenias N; Zhang Y; Banks CJ
    Environ Sci Technol; 2013 May; 47(9):4512-20. PubMed ID: 23517384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-biased solar-microbial device for sustainable hydrogen generation.
    Wang H; Qian F; Wang G; Jiao Y; He Z; Li Y
    ACS Nano; 2013 Oct; 7(10):8728-35. PubMed ID: 24025029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioelectricity and CO
    Fang Z; Chen H; Wei YQ; Fan Q; Zhu MW; Zhang Y; Liu J; Yong YC
    Bioresour Technol; 2024 Apr; 398():130530. PubMed ID: 38447619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of an Acetate Metabolic Pathway to Enhance Electron Generation of Engineered
    Zhang J; Chen Z; Liu C; Li J; An X; Wu D; Sun X; Zhang B; Fu L; Li F; Song H
    Front Bioeng Biotechnol; 2021; 9():757953. PubMed ID: 34869266
    [No Abstract]   [Full Text] [Related]  

  • 30. Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride.
    Fitzgerald LA; Petersen ER; Gross BJ; Soto CM; Ringeisen BR; El-Naggar MY; Biffinger JC
    Biosens Bioelectron; 2012 Jan; 31(1):492-8. PubMed ID: 22154401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1.
    Kipf E; Koch J; Geiger B; Erben J; Richter K; Gescher J; Zengerle R; Kerzenmacher S
    Bioresour Technol; 2013 Oct; 146():386-392. PubMed ID: 23954244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst.
    Fapetu S; Keshavarz T; Clements M; Kyazze G
    Biotechnol Lett; 2016 Sep; 38(9):1465-73. PubMed ID: 27193895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions.
    Gomaa OM; Fapetu S; Kyazze G; Keshavarz T
    World J Microbiol Biotechnol; 2017 Mar; 33(3):56. PubMed ID: 28229332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active N dopant states of electrodes regulate extracellular electron transfer of Shewanella oneidensis MR-1 for bioelectricity generation: Experimental and theoretical investigations.
    Wang YX; Li WQ; He CS; Zhao HQ; Han JC; Liu XC; Mu Y
    Biosens Bioelectron; 2020 Jul; 160():112231. PubMed ID: 32469730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G; Wang H; Ling Y; Tang Y; Yang X; Fitzmorris RC; Wang C; Zhang JZ; Li Y
    Nano Lett; 2011 Jul; 11(7):3026-33. PubMed ID: 21710974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversing Electron Transfer Chain for Light-Driven Hydrogen Production in Biotic-Abiotic Hybrid Systems.
    Han HX; Tian LJ; Liu DF; Yu HQ; Sheng GP; Xiong Y
    J Am Chem Soc; 2022 Apr; 144(14):6434-6441. PubMed ID: 35377628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression.
    Kouzuma A; Oba H; Tajima N; Hashimoto K; Watanabe K
    BMC Microbiol; 2014 Jul; 14():190. PubMed ID: 25028134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Condition Variations on Bioelectrochemical System Performance: An Experimental Investigation of Sulfamethoxazole Degradation.
    Xue Q; Chen Z; Xie W; Zhang S; Jiang J; Sun G
    Molecules; 2024 May; 29(10):. PubMed ID: 38792137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.