BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28285407)

  • 1. Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene.
    Davidi L; Pick U
    Plant Cell Rep; 2017 Jun; 36(6):807-814. PubMed ID: 28285407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil.
    Davidi L; Levin Y; Ben-Dor S; Pick U
    Plant Physiol; 2015 Jan; 167(1):60-79. PubMed ID: 25404729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-trans beta-carotene is absorbed preferentially to 9-cis beta-carotene, but the latter accumulates in the tissues of domestic ferrets (Mustela putorius puro).
    Erdman JW; Thatcher AJ; Hofmann NE; Lederman JD; Block SS; Lee CM; Mokady S
    J Nutr; 1998 Nov; 128(11):2009-13. PubMed ID: 9808657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil.
    Davidi L; Shimoni E; Khozin-Goldberg I; Zamir A; Pick U
    Plant Physiol; 2014 Apr; 164(4):2139-56. PubMed ID: 24567188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoisomers of beta-Carotene and Phytoene in the Alga Dunaliella bardawil.
    Ben-Amotz A; Lers A; Avron M
    Plant Physiol; 1988 Apr; 86(4):1286-91. PubMed ID: 16666068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The beta-carotene-rich alga Dunaliella bardawil as a source of retinol in a rat diet.
    Ben-Amotz A; Mokady S; Avron M
    Br J Nutr; 1988 May; 59(3):443-9. PubMed ID: 3395603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus.
    Pick U; Zarka A; Boussiba S; Davidi L
    Planta; 2019 Jan; 249(1):31-47. PubMed ID: 30470898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta.
    Gómez PI; Barriga A; Cifuentes AS; González MA
    Biol Res; 2003; 36(2):185-92. PubMed ID: 14513713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of Action of the Massively Accumulated beta-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation.
    Ben-Amotz A; Shaish A; Avron M
    Plant Physiol; 1989 Nov; 91(3):1040-3. PubMed ID: 16667108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of cone photoreceptor M-opsin degradation with 9-cis-β-carotene-rich alga Dunaliella bardawil in Rpe65(-/-) mouse retinal explant culture.
    Ozaki T; Nakazawa M; Kudo T; Hirano S; Suzuki K; Ishiguro S
    Curr Eye Res; 2014 Dec; 39(12):1221-31. PubMed ID: 25006880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of a Protein Associated with Carotene Globules in the Alga Dunaliella bardawil.
    Katz A; Jimenez C; Pick U
    Plant Physiol; 1995 Aug; 108(4):1657-1664. PubMed ID: 12228570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 9-cis beta-carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice.
    Harari A; Harats D; Marko D; Cohen H; Barshack I; Kamari Y; Gonen A; Gerber Y; Ben-Amotz A; Shaish A
    J Nutr; 2008 Oct; 138(10):1923-30. PubMed ID: 18806102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary lipid level and the availability of beta-carotene of Dunaliella-bardawil in rats.
    Mokady S; Ben-Amotz A
    Nutr Cancer; 1991; 15(1):47-52. PubMed ID: 2017398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bifunctional identification of both lycopene β- and ε-cyclases from the lutein-rich Dunaliella bardawil.
    Liang MH; Liang ZC; Chen HH; Jiang JG
    Enzyme Microb Technol; 2019 Dec; 131():109426. PubMed ID: 31615667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant activity of 9-cis compared to all-trans beta-carotene in vitro.
    Levin G; Mokady S
    Free Radic Biol Med; 1994 Jul; 17(1):77-82. PubMed ID: 7959168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Identification of Two Types of Carotene Hydroxylases from the Green Alga
    Liang MH; Xie H; Chen HH; Liang ZC; Jiang JG
    ACS Synth Biol; 2020 Jun; 9(6):1246-1253. PubMed ID: 32408742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27.
    Bruno M; Al-Babili S
    Planta; 2016 Jun; 243(6):1429-40. PubMed ID: 26945857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Characterization of a CruP-Like Isomerase in
    Chen HH; Pang XH; Dai JL; Jiang JG
    J Agric Food Chem; 2024 May; 72(17):10005-10013. PubMed ID: 38626461
    [No Abstract]   [Full Text] [Related]  

  • 19. Creatinine combined with light increases the contents of lutein and β-carotene, the main carotenoids of Dunaliella bardawil.
    Xie SR; Li Y; Liang MH; Yan B; Jiang JG
    Enzyme Microb Technol; 2021 Nov; 151():109913. PubMed ID: 34649686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D27-LIKE1 isomerase has a preference towards trans/cis and cis/cis conversions of carotenoids in Arabidopsis.
    Gulyás Z; Moncsek B; Hamow KÁ; Stráner P; Tolnai Z; Badics E; Incze N; Darkó É; Nagy V; Perczel A; Kovács L; Soós V
    Plant J; 2022 Dec; 112(6):1377-1395. PubMed ID: 36308414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.