BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28285534)

  • 1. Use of Saccharomyces cerevisiae To Reduce the Bioaccessibility of Mercury from Food.
    Jadán-Piedra C; Baquedano M; Puig S; Vélez D; Devesa V
    J Agric Food Chem; 2017 Apr; 65(13):2876-2882. PubMed ID: 28285534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of lactic acid bacteria to reduce mercury bioaccessibility.
    Jadán-Piedra C; Alcántara C; Monedero V; Zúñiga M; Vélez D; Devesa V
    Food Chem; 2017 Aug; 228():158-166. PubMed ID: 28317709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green tea infusion reduces mercury bioaccessibility and dietary exposure from raw and cooked fish.
    Anacleto P; Barbosa V; Alves RN; Maulvault AL; Bronze MR; Marques A
    Food Chem Toxicol; 2020 Nov; 145():111717. PubMed ID: 32890690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in mercury speciation in seafood after cooking and gastrointestinal digestion.
    Liao W; Wang G; Zhao W; Zhang M; Wu Y; Liu X; Li K
    J Hazard Mater; 2019 Aug; 375():130-137. PubMed ID: 31054530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Physiological Gastrointestinal Parameters on the Bioaccessibility of Mercury and Selenium from Swordfish.
    Jadán-Piedra C; Clemente MJ; Devesa V; Vélez D
    J Agric Food Chem; 2016 Jan; 64(3):690-8. PubMed ID: 26726738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury bioaccessibility in fish and seafood: Effect of method, cooking and trophic level on consumption risk assessment.
    Costa F; Mieiro CL; Pereira ME; Coelho JP
    Mar Pollut Bull; 2022 Jun; 179():113736. PubMed ID: 35576676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified Dietary Fiber from Cassava Pulp and Assessment of Mercury Bioaccessibility and Intestinal Uptake Using an In Vitro Digestion/Caco-2 Model System.
    Kachenpukdee N; Santerre CR; Ferruzzi MG; Oonsivilai R
    J Food Sci; 2016 Jul; 81(7):T1854-63. PubMed ID: 27220052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of dietary compounds to reduce mercury bioavailability.
    Jadán-Piedra C; Vélez D; Devesa V
    Food Chem; 2018 May; 248():353-359. PubMed ID: 29329865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the addition of ingredients affect mercury and cadmium bioaccessibility in seafood-based meals?
    Marmelo I; Barbosa V; Maulvault AL; Duarte MP; Marques A
    Food Chem Toxicol; 2020 Feb; 136():110978. PubMed ID: 31747620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies.
    Siedlikowski M; Bradley M; Kubow S; Goodrich JM; Franzblau A; Basu N
    Environ Res; 2016 Aug; 149():266-273. PubMed ID: 26896323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Mercury Bioavailability in Humans and Fish.
    Bradley MA; Barst BD; Basu N
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28208586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit associated to the consumption of raw and cooked blue shark (Prionace glauca).
    Matos J; Lourenço HM; Brito P; Maulvault AL; Martins LL; Afonso C
    Environ Res; 2015 Nov; 143(Pt B):123-9. PubMed ID: 26409850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure assessment for methyl and total mercury from seafood consumption in Korea, 2005 to 2008.
    Moon HB; Kim SJ; Park H; Jung YS; Lee S; Kim YH; Choi M
    J Environ Monit; 2011 Sep; 13(9):2400-5. PubMed ID: 21847486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of mercury bioaccessibility on exposure assessment associated with consumption of cooked predatory fish in Spain.
    Torres-Escribano S; Ruiz A; Barrios L; Vélez D; Montoro R
    J Sci Food Agric; 2011 Apr; 91(6):981-6. PubMed ID: 21416473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary Strategies To Reduce the Bioaccessibility of Arsenic from Food Matrices.
    Clemente MJ; Devesa V; Vélez D
    J Agric Food Chem; 2016 Feb; 64(4):923-31. PubMed ID: 26766512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method.
    Cabañero AI; Madrid Y; Cámara C
    Biol Trace Elem Res; 2007 Dec; 119(3):195-211. PubMed ID: 17916943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral bioaccessibility of arsenic, mercury and methylmercury in marine species commercialized in Catalonia (Spain) and health risks for the consumers.
    Cano-Sancho G; Perelló G; Maulvault AL; Marques A; Nadal M; Domingo JL
    Food Chem Toxicol; 2015 Dec; 86():34-40. PubMed ID: 26409124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury.
    Afonso C; Costa S; Cardoso C; Oliveira R; Lourenço HM; Viula A; Batista I; Coelho I; Nunes ML
    Environ Res; 2015 Nov; 143(Pt B):130-7. PubMed ID: 25962922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccessibility of mercury from traditional northern country foods measured using an in vitro gastrointestinal model is independent of mercury concentration.
    Laird BD; Shade C; Gantner N; Chan HM; Siciliano SD
    Sci Total Environ; 2009 Nov; 407(23):6003-8. PubMed ID: 19740524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hair mercury levels and food consumption in residents from the Pearl River Delta: South China.
    Shao D; Kang Y; Cheng Z; Wang H; Huang M; Wu S; Chen K; Wong MH
    Food Chem; 2013 Jan; 136(2):682-8. PubMed ID: 23122114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.