These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28285748)

  • 1. A modelling approach demonstrating micromechanical changes in the tibial cemented interface due to in vivo service.
    Srinivasan P; Miller MA; Verdonschot N; Mann KA; Janssen D
    J Biomech; 2017 May; 56():19-25. PubMed ID: 28285748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain shielding in trabecular bone at the tibial cement-bone interface.
    Srinivasan P; Miller MA; Verdonschot N; Mann KA; Janssen D
    J Mech Behav Biomed Mater; 2017 Feb; 66():181-186. PubMed ID: 27889526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and computational micromechanics at the tibial cement-trabeculae interface.
    Srinivasan P; Miller MA; Verdonschot N; Mann KA; Janssen D
    J Biomech; 2016 Jun; 49(9):1641-1648. PubMed ID: 27079621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in microgaps, micromotion, and trabecular strain from interlocked cement-trabecular bone interfaces in total knee replacements with in vivo service.
    Miller MA; Goodheart JR; Khechen B; Janssen D; Mann KA
    J Orthop Res; 2016 Jun; 34(6):1019-25. PubMed ID: 26595084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress shielding in bone of a bone-cement interface.
    Zhang QH; Cossey A; Tong J
    Med Eng Phys; 2016 Apr; 38(4):423-6. PubMed ID: 26904919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-structure interactions in micro-interlocked regions of the cement-bone interface.
    Mann KA; Miller MA
    Comput Methods Biomech Biomed Engin; 2014; 17(16):1809-20. PubMed ID: 23480611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement.
    Chong DY; Hansen UN; van der Venne R; Verdonschot N; Amis AA
    J Biomech; 2011 Mar; 44(5):948-54. PubMed ID: 21236431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.
    Janssen D; Mann KA; Verdonschot N
    J Biomech; 2008 Nov; 41(15):3158-63. PubMed ID: 18848699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia.
    Cawley DT; Kelly N; Simpkin A; Shannon FJ; McGarry JP
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):390-7. PubMed ID: 22079691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique.
    Marx R; Qunaibi M; Wirtz DC; Niethard FU; Mumme T
    Biomed Eng Online; 2005 Oct; 4():61. PubMed ID: 16262888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of time in-situ and implant type on fixation strength of cemented tibial trays - a post mortem retrieval analysis.
    Gebert de Uhlenbrock A; Püschel V; Püschel K; Morlock MM; Bishop NE
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):929-35. PubMed ID: 22819669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trabecular resorption patterns of cement-bone interlock regions in total knee replacements.
    Goodheart JR; Miller MA; Oest ME; Mann KA
    J Orthop Res; 2017 Dec; 35(12):2773-2780. PubMed ID: 28452065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased initial cement-bone interlock correlates with reduced total knee arthroplasty micro-motion following in vivo service.
    Miller MA; Terbush MJ; Goodheart JR; Izant TH; Mann KA
    J Biomech; 2014 Jul; 47(10):2460-6. PubMed ID: 24795171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D real-time micromechanical compressive behaviour of bone-cement interface: experimental and finite element studies.
    Tozzi G; Zhang QH; Tong J
    J Biomech; 2012 Jan; 45(2):356-63. PubMed ID: 22055427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo loss of cement-bone interlock reduces fixation strength in total knee arthroplasties.
    Goodheart JR; Miller MA; Mann KA
    J Orthop Res; 2014 Aug; 32(8):1052-60. PubMed ID: 24777486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromotion in knee arthroplasty. A roentgen stereophotogrammetric analysis of tibial component fixation.
    Ryd L
    Acta Orthop Scand Suppl; 1986; 220():1-80. PubMed ID: 3461667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally efficient prediction of bone-implant interface micromotion of a cementless tibial tray during gait.
    Fitzpatrick CK; Hemelaar P; Taylor M
    J Biomech; 2014 May; 47(7):1718-26. PubMed ID: 24642351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique].
    Mumme T; Marx R; Qunaibi M; Niethard FU; Wirtz DC
    Biomed Tech (Berl); 2006 Jul; 51(2):95-102. PubMed ID: 16915772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similitude of cement-bone micromechanics in cemented rat and human knee replacement.
    Mann KA; Miller MA; Tatusko ME; Oest ME
    J Orthop Res; 2020 Jul; 38(7):1529-1537. PubMed ID: 32167182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.