BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28285906)

  • 1. Vertebrae localization in CT using both local and global symmetry features.
    Kim K; Lee S
    Comput Med Imaging Graph; 2017 Jun; 58():45-55. PubMed ID: 28285906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lumbar spine segmentation method based on deep learning.
    Lu H; Li M; Yu K; Zhang Y; Yu L
    J Appl Clin Med Phys; 2023 Jun; 24(6):e13996. PubMed ID: 37082799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation.
    Korez R; Ibragimov B; Likar B; Pernuš F; Vrtovec T
    IEEE Trans Med Imaging; 2015 Aug; 34(8):1649-62. PubMed ID: 25585415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint Vertebrae Identification and Localization in Spinal CT Images by Combining Short- and Long-Range Contextual Information.
    Liao H; Mesfin A; Luo J
    IEEE Trans Med Imaging; 2018 May; 37(5):1266-1275. PubMed ID: 29727289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Modality Vertebra Recognition in Arbitrary Views Using 3D Deformable Hierarchical Model.
    Cai Y; Osman S; Sharma M; Landis M; Li S
    IEEE Trans Med Imaging; 2015 Aug; 34(8):1676-93. PubMed ID: 25594966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines.
    Jakubicek R; Chmelik J; Jan J; Ourednicek P; Lambert L; Gavelli G
    Comput Methods Programs Biomed; 2020 Jan; 183():105081. PubMed ID: 31600607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated spine and vertebrae detection in CT images using object-based image analysis.
    Schwier M; Chitiboi T; Hülnhagen T; Hahn HK
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):938-63. PubMed ID: 23946190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated model-based vertebra detection, identification, and segmentation in CT images.
    Klinder T; Ostermann J; Ehm M; Franz A; Kneser R; Lorenz C
    Med Image Anal; 2009 Jun; 13(3):471-82. PubMed ID: 19285910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised Scoliosis Diagnosis via a Joint Recognition Method with Multifeature Descriptors and Centroids Extraction.
    Zhang L; Zhao J; Yang H; Jiang Z; Li Q
    Comput Math Methods Med; 2018; 2018():6213264. PubMed ID: 30356395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic inference of articulated spine models in CT images using high-order Markov Random Fields.
    Kadoury S; Labelle H; Paragios N
    Med Image Anal; 2011 Aug; 15(4):426-37. PubMed ID: 21354853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved level set method for vertebra CT image segmentation.
    Huang J; Jian F; Wu H; Li H
    Biomed Eng Online; 2013 May; 12():48. PubMed ID: 23714300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net.
    Cheng P; Yang Y; Yu H; He Y
    Sci Rep; 2021 Nov; 11(1):22156. PubMed ID: 34772972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine.
    Vrtovec T; Likar B; Pernus F
    Phys Med Biol; 2008 Apr; 53(7):1895-908. PubMed ID: 18364545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model.
    Rasoulian A; Rohling R; Abolmaesumi P
    IEEE Trans Med Imaging; 2013 Oct; 32(10):1890-900. PubMed ID: 23771318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of vertebrae in 3D CT images using adaptive fast 3D pulse coupled neural networks.
    Zareie M; Parsaei H; Amiri S; Awan MS; Ghofrani M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):1009-1020. PubMed ID: 30377948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spine segmentation in medical images using manifold embeddings and higher-order MRFs.
    Kadoury S; Labelle H; Paragios N
    IEEE Trans Med Imaging; 2013 Jul; 32(7):1227-38. PubMed ID: 23629848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.
    Kadoury S; Cheriet F; Labelle H
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1422-35. PubMed ID: 19336299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions.
    Reaungamornrat S; De Silva T; Uneri A; Goerres J; Jacobson M; Ketcha M; Vogt S; Kleinszig G; Khanna AJ; Wolinsky JP; Prince JL; Siewerdsen JH
    Phys Med Biol; 2016 Dec; 61(23):8276-8297. PubMed ID: 27811396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.
    Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N
    Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.