BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28286077)

  • 1. Solubilisation of Persian gum: Chemical modification using acrylamide.
    Samari-Khalaj M; Abbasi S
    Int J Biol Macromol; 2017 Aug; 101():187-195. PubMed ID: 28286077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of emulsifying property in Persian gum using octenyl succinic anhydride (OSA).
    Mohammadi S; Abbasi S; Scanlon MG
    Int J Biol Macromol; 2016 Aug; 89():396-405. PubMed ID: 27138859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Gleditsia sinensis gum rheological properties with pressure cell treatment in semi-solid state.
    Zhou ZY; Zhang WA; Duan JF; Zhang WM; Sun DF; Jiang JX
    Int J Biol Macromol; 2016 Mar; 84():254-60. PubMed ID: 26718865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery.
    Kaity S; Isaac J; Kumar PM; Bose A; Wong TW; Ghosh A
    Carbohydr Polym; 2013 Oct; 98(1):1083-94. PubMed ID: 23987450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the properties of Zodo gum and examining its potential for amino acid binding by periodate oxidation.
    Mozafari H; Hojjatoleslamy M; Mohammadizadeh M
    Int J Biol Macromol; 2021 Jan; 167():1517-1526. PubMed ID: 33217461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.
    Mahfoudhi N; Sessa M; Ferrari G; Hamdi S; Donsi F
    Food Sci Technol Int; 2016 Jun; 22(4):277-87. PubMed ID: 26163565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chinese quince seed gum: Flow behaviour, thixotropy and viscoelasticity.
    Wang L; Liu HM; Zhu CY; Xie AJ; Ma BJ; Zhang PZ
    Carbohydr Polym; 2019 Apr; 209():230-238. PubMed ID: 30732804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia.
    Fadavi G; Mohammadifar MA; Zargarran A; Mortazavian AM; Komeili R
    Carbohydr Polym; 2014 Jan; 101():1074-80. PubMed ID: 24299876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release.
    Malviya R; Sharma PK; Dubey SK
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():772-784. PubMed ID: 30033312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of OSA-esterified insoluble fraction of Persian gum and its application in dairy cream.
    Nikkhou S; Labbafi M; Mousavi ME; Askari G
    J Sci Food Agric; 2024 Jan; 104(2):892-904. PubMed ID: 37707173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular, rheological and physicochemical characterisation of puka gum, an arabinogalactan-protein extracted from the Meryta sinclairii tree.
    Wee MSM; Sims IM; Goh KKT; Matia-Merino L
    Carbohydr Polym; 2019 Sep; 220():247-255. PubMed ID: 31196547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.).
    Porto BC; Augusto PE; Terekhov A; Hamaker BR; Cristianini M
    Carbohydr Polym; 2015 Sep; 129():187-93. PubMed ID: 26050904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graft [partially carboxymethylated guar gum-g-poly N-(hydroxymethyl) acrylamide] copolymer: from synthesis to applications.
    Pandey VS; Verma SK; Behari K
    Carbohydr Polym; 2014 Sep; 110():285-91. PubMed ID: 24906757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of basil seed gum, Cress seed gum and Quince seed gum on the physical, textural and rheological properties of whipped cream.
    Farahmandfar R; Asnaashari M; Salahi MR; Khosravi Rad T
    Int J Biol Macromol; 2017 May; 98():820-828. PubMed ID: 28212934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the emulsifying properties of β-lactoglobulin-wild almond gum (Amygdalus scoparia Spach) exudate complexes by heat.
    Golkar A; Nasirpour A; Keramat J
    J Sci Food Agric; 2017 Jan; 97(1):341-349. PubMed ID: 27059005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rheological properties of tara gum (Caesalpinia spinosa).
    Wu Y; Ding W; Jia L; He Q
    Food Chem; 2015 Feb; 168():366-71. PubMed ID: 25172722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide.
    Shi Z; Jia C; Wang D; Deng J; Xu G; Wu C; Dong M; Guo Z
    Int J Biol Macromol; 2019 Jul; 133():964-970. PubMed ID: 31004636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in Rosaceae gum exudates: From synthesis to food and non-food applications.
    Bouaziz F; Koubaa M; Ellouz Ghorbel R; Ellouz Chaabouni S
    Int J Biol Macromol; 2016 May; 86():535-45. PubMed ID: 26836615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological and textural properties of underutilized exudate gums of Jammu and Kashmir, India.
    Bashir M; Usmani T; Haripriya S; Ahmed T
    Int J Biol Macromol; 2018 Apr; 109():847-854. PubMed ID: 29133097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physico-chemical characterization of the temperature dependent hydration kinetics of Gleditsia sinensis gum.
    Jian HL; Lin XJ; Zhang WM; Sun DF; Jiang JX
    Int J Biol Macromol; 2013 Nov; 62():596-602. PubMed ID: 24120882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.