These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 2828639)

  • 1. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution.
    Weber IT; Steitz TA
    J Mol Biol; 1987 Nov; 198(2):311-26. PubMed ID: 2828639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP.
    McKay DB; Weber IT; Steitz TA
    J Biol Chem; 1982 Aug; 257(16):9518-24. PubMed ID: 6286624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallizing catabolite gene activator protein with cAMP for structural analysis.
    Weber IT
    Methods Enzymol; 1988; 159():278-85. PubMed ID: 2842595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA.
    McKay DB; Steitz TA
    Nature; 1981 Apr; 290(5809):744-9. PubMed ID: 6261152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 1.6Å resolution structure of activated D138L mutant of catabolite gene activator protein with two cAMP bound in each monomer.
    Tao W; Gao Z; Gao Z; Zhou J; Huang Z; Dong Y; Yu S
    Int J Biol Macromol; 2011 Apr; 48(3):459-65. PubMed ID: 21255606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution.
    Schneider G; Lindqvist Y; Lundqvist T
    J Mol Biol; 1990 Feb; 211(4):989-1008. PubMed ID: 2107319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution.
    Passner JM; Schultz SC; Steitz TA
    J Mol Biol; 2000 Dec; 304(5):847-59. PubMed ID: 11124031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functioning chimera of the cyclic nucleotide-binding domain from the bovine retinal rod ion channel and the DNA-binding domain from catabolite gene-activating protein.
    Scott SP; Weber IT; Harrison RW; Carey J; Tanaka JC
    Biochemistry; 2001 Jun; 40(25):7464-73. PubMed ID: 11412099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees.
    Schultz SC; Shields GC; Steitz TA
    Science; 1991 Aug; 253(5023):1001-7. PubMed ID: 1653449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a cyclic AMP-independent mutant of catabolite gene activator protein.
    Weber IT; Gilliland GL; Harman JG; Peterkofsky A
    J Biol Chem; 1987 Apr; 262(12):5630-6. PubMed ID: 3032940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic studies of protein-nucleic acid interaction: catabolite gene activator protein and the large fragment of DNA polymerase I.
    Steitz TA; Weber IT; Ollis D; Brick P
    J Biomol Struct Dyn; 1983 Dec; 1(4):1023-37. PubMed ID: 6101086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer.
    Passner JM; Steitz TA
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):2843-7. PubMed ID: 9096308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and the catabolite gene activator protein are homologous.
    Weber IT; Takio K; Titani K; Steitz TA
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7679-83. PubMed ID: 6296845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-binding motif of the Escherichia coli catabolite gene activator protein.
    Liang H; Olejniczak ET; Mao X; Nettesheim DG; Yu L; Thompson CB; Fesik SW
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11655-9. PubMed ID: 7972119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of allosteric changes in cyclic AMP receptor protein function.
    Adhya S; Ryu S; Garges S
    Subcell Biochem; 1995; 24():303-21. PubMed ID: 7900180
    [No Abstract]   [Full Text] [Related]  

  • 16. 1.7 A X-ray structure of the periplasmic ribose receptor from Escherichia coli.
    Mowbray SL; Cole LB
    J Mol Biol; 1992 May; 225(1):155-75. PubMed ID: 1583688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine.
    Sack JS; Saper MA; Quiocho FA
    J Mol Biol; 1989 Mar; 206(1):171-91. PubMed ID: 2649682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sites of allosteric shift in the structure of the cyclic AMP receptor protein.
    Garges S; Adhya S
    Cell; 1985 Jul; 41(3):745-51. PubMed ID: 2988785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a cAMP-independent form of catabolite gene activator protein with adenosine substituted in one of two cAMP-binding sites.
    Vaney MC; Gilliland GL; Harman JG; Peterkofsky A; Weber IT
    Biochemistry; 1989 May; 28(11):4568-74. PubMed ID: 2548582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase.
    Weber IT; Steitz TA; Bubis J; Taylor SS
    Biochemistry; 1987 Jan; 26(2):343-51. PubMed ID: 3030405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.