These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28286464)

  • 1. Characterization of Impulse Radio Intrabody Communication System for Wireless Body Area Networks.
    Cai Z; Seyedi M; Zhang W; Rivet F; Lai DTH
    J Med Biol Eng; 2017; 37(1):74-84. PubMed ID: 28286464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation on FPGA-implemented UWB-IR receiver for in-body to out-of-body communication systems.
    Shimizu Y; Anzai D; Jianqing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6981-4. PubMed ID: 25571602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 92 Mb/s Fat-Intrabody Communication (Fat-IBC) With Low-Cost WLAN Hardware.
    Rangaiah PKB; Engstrand J; Johansson T; Perez MD; Augustine R
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):89-96. PubMed ID: 37432837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bit error rate estimation for galvanic-type intra-body communication using experimental eye-diagram and jitter characteristics.
    Li JW; Chen XM; Pun SH; Mak PU; Gao YM; Vai MI; Du M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5195-8. PubMed ID: 24110906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges.
    Čuljak I; Lučev Vasić Ž; Mihaldinec H; Džapo H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey on intrabody communications for body area network applications.
    Seyedi M; Kibret B; Lai DT; Faulkner M
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2067-79. PubMed ID: 23542945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces.
    Song M; Huang Y; Visser HJ; Romme J; Liu YH
    IEEE J Solid-State Circuits; 2022 Dec; 57(12):3656-3668. PubMed ID: 36743394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System development and performance evaluation on detection schemes for UWB-IR implant communications.
    Katsu K; Anzai D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1234-7. PubMed ID: 24109917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equation environment coupling and interference on the electric-field intrabody communication channel.
    Xu R; Ng WC; Zhu H; Shan H; Yuan J
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2051-9. PubMed ID: 22562725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on intrabody communication for personal healthcare monitoring system.
    Alshehab A; Kobayashi N; Ruiz J; Kikuchi R; Shimamoto S; Ishibashi H
    Telemed J E Health; 2008 Oct; 14(8):851-7. PubMed ID: 18954257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of galvanic-coupled intrabody communication using the human body circuit model.
    Kibret B; Seyedi M; Lai DT; Faulkner M
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1196-206. PubMed ID: 25014932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field intrabody communication channel modeling with finite-element method.
    Xu R; Zhu H; Yuan J
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):705-12. PubMed ID: 21095853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of attenuation and dispersion through the skin in intrabody communications systems.
    Callejón MA; Roa LM; Reina-Tosina J; Naranjo-Hernández D
    IEEE Trans Inf Technol Biomed; 2012 Jan; 16(1):159-65. PubMed ID: 21997285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online digital offset mismatch compensation for high-speed time-interleaved ADC in real-time optical OFDM receiver.
    Chen M; Liu G; Zhang L; Zhou H; Chen Q
    Opt Express; 2019 Jun; 27(12):16650-16660. PubMed ID: 31252888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Software Defined Radio Evaluation Platform for WBAN Systems.
    Wang J; Han K; Chen Z; Alexandridis A; Zilic Z; Pang Y; Lin J
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.
    Gao YM; Zhang HF; Lin S; Jiang RX; Chen ZY; Lučev Vasić Ž; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2018 Jun; 17(1):71. PubMed ID: 29866126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BER and channel capacity of a deep space FSO communication system using L-PPM-MSK-SIM scheme during superior solar conjunction.
    Xu G
    Opt Express; 2019 Aug; 27(17):24610-24623. PubMed ID: 31510348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascaded Network Body Channel Model for Intrabody Communication.
    Wang H; Tang X; Choy CS; Sobelman GE
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1044-52. PubMed ID: 26111404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IB-MAC: Transmission Latency-Aware MAC for Electro-Magnetic Intra-Body Communications.
    Kim S; Ko J
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30654499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Heuristic Approach for Optical Transceiver Placement to Optimize SNR and Illuminance Uniformities of an Optical Body Area Network.
    Masroor K; Jeoti V; Drieberg M; Cheab S; Rajbhandari S
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.