These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28286476)

  • 1. Decoding Movement Goals from the Fronto-Parietal Reach Network.
    Gertz H; Lingnau A; Fiehler K
    Front Hum Neurosci; 2017; 11():84. PubMed ID: 28286476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task.
    Gertz H; Fiehler K
    J Neurophysiol; 2015 Jul; 114(1):170-83. PubMed ID: 25904714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural dynamics in monkey parietal reach region reflect context-specific sensorimotor transformations.
    Gail A; Andersen RA
    J Neurosci; 2006 Sep; 26(37):9376-84. PubMed ID: 16971521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cortical timeline for deciding on reach motor goals.
    Westendorff S; Klaes C; Gail A
    J Neurosci; 2010 Apr; 30(15):5426-36. PubMed ID: 20392964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex.
    Gail A; Klaes C; Westendorff S
    J Neurosci; 2009 Jul; 29(30):9490-9. PubMed ID: 19641112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning.
    Pilacinski A; Lindner A
    Sci Rep; 2019 Feb; 9(1):1962. PubMed ID: 30760821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital-Parietal-Frontal Cortex: An fMRI Study.
    Cappadocia DC; Monaco S; Chen Y; Blohm G; Crawford JD
    Cereb Cortex; 2017 Nov; 27(11):5242-5260. PubMed ID: 27744289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature interactions enable decoding of sensorimotor transformations for goal-directed movement.
    Barany DA; Della-Maggiore V; Viswanathan S; Cieslak M; Grafton ST
    J Neurosci; 2014 May; 34(20):6860-73. PubMed ID: 24828640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action planning modulates the representation of object features in human fronto-parietal and occipital cortex.
    Velji-Ibrahim J; Crawford JD; Cattaneo L; Monaco S
    Eur J Neurosci; 2022 Sep; 56(6):4803-4818. PubMed ID: 35841138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rostrocaudal functional gradient among the pre-dorsal premotor cortex, dorsal premotor cortex and primary motor cortex in goal-directed motor behaviour.
    Nakayama Y; Yamagata T; Hoshi E
    Eur J Neurosci; 2016 Jun; 43(12):1569-89. PubMed ID: 27062460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of visual signals for direct specification of motor targets and for conceptual representation of action targets in the dorsal and ventral premotor cortex.
    Yamagata T; Nakayama Y; Tanji J; Hoshi E
    J Neurophysiol; 2009 Dec; 102(6):3280-94. PubMed ID: 19793880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning.
    Bernier PM; Whittingstall K; Grafton ST
    Front Hum Neurosci; 2017; 11():249. PubMed ID: 28536517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled versus decoupled visuomotor feedback: Differential frontoparietal activity during curved reach planning on simultaneous functional near-infrared spectroscopy and electroencephalography.
    Le DT; Ogawa H; Tsuyuhara M; Watanabe K; Watanabe T; Ochi R; Nishijo H; Mihara M; Fujita N; Urakawa S
    Brain Behav; 2022 Jul; 12(7):e2681. PubMed ID: 35701382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential involvement of parietal and precentral regions in movement preparation and motor intention.
    Thoenissen D; Zilles K; Toni I
    J Neurosci; 2002 Oct; 22(20):9024-34. PubMed ID: 12388609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex.
    Kuang S; Morel P; Gail A
    Cereb Cortex; 2016 Feb; 26(2):731-47. PubMed ID: 25576535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Right Hemisphere Lateralization in Neural Connectivity Within Fronto-Parietal Networks in Non-human Primates During a Visual Reaching Task.
    Lee J; Choi H; Min K; Lee S; Ahn KH; Jo HJ; Kim IY; Jang DP; Lee KM
    Front Behav Neurosci; 2018; 12():186. PubMed ID: 30333734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans.
    Nakayama Y; Sugawara SK; Fukunaga M; Hamano YH; Sadato N; Nishimura Y
    Neuroimage; 2022 Aug; 256():119221. PubMed ID: 35447355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural activity in superior parietal cortex during rule-based visual-motor transformations.
    Hawkins KM; Sayegh P; Yan X; Crawford JD; Sergio LE
    J Cogn Neurosci; 2013 Mar; 25(3):436-54. PubMed ID: 23092356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of neurons in the primate medial intraparietal area reveals a joint representation of intended reach direction and amplitude.
    Rajalingham R; Musallam S
    PLoS One; 2017; 12(8):e0182519. PubMed ID: 28793351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.