These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28286596)

  • 1. Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds.
    Suwarno ; Ngene P; Nale A; Eggenhuisen TM; Oschatz M; Embs JP; Remhof A; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2017 Mar; 121(8):4197-4205. PubMed ID: 28286596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4.
    Ngene P; Verkuijlen MH; Zheng Q; Kragten J; van Bentum PJ; Bitter JH; de Jongh PE
    Faraday Discuss; 2011; 151():47-58; discussion 95-115. PubMed ID: 22455062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nature of Interface Interactions Leading to High Ionic Conductivity in LiBH
    Lambregts SFH; van Eck ERH; Ngene P; Kentgens APM
    ACS Appl Energy Mater; 2022 Jul; 5(7):8057-8066. PubMed ID: 35935016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Conductivity Enhancement and Pore Confinement Conductivity-Lowering Behavior inside the Nanopores of Solid Silica-gel Nanocomposite Electrolytes.
    Sagara A; Yabe H; Chen X; Put B; Hantschel T; Mees M; Arase H; Kaneko Y; Uedono A; Vereecken PM
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40543-40551. PubMed ID: 34403249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the ionic conductivity of lithium borohydride by silica supports.
    Yang G; Xie C; Li Y; Li HW; Liu D; Chen J; Zhang Q
    Dalton Trans; 2021 Nov; 50(42):15352-15358. PubMed ID: 34642725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Hydrogen Storage Properties and Reversibility of LiBH
    Zang L; Sun W; Liu S; Huang Y; Yuan H; Tao Z; Wang Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19598-19604. PubMed ID: 29786421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li-Ion Diffusion in Nanoconfined LiBH
    Zettl R; Gombotz M; Clarkson D; Greenbaum SG; Ngene P; de Jongh PE; Wilkening HMR
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38570-38583. PubMed ID: 32786241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Nanoconfined LiBH
    Suwarno S; Nale A; Suwarta P; Wijayanti ID; Ismail M
    Front Chem; 2022; 10():866959. PubMed ID: 35464216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress and Advances in Porous Silica-based Scaffolds for Enhanced Solid-state Hydrogen Storage: A Systematic Literature Review.
    Abdulkadir BA; Jalil AA; Cheng CK; Setiabudi HD
    Chem Asian J; 2024 Jan; 19(2):e202300833. PubMed ID: 37997488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of LiBF
    de Kort LM; Gulino V; Blanchard D; Ngene P
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ NMR Study on the Interaction between LiBH4-Ca(BH4)2 and Mesoporous Scaffolds.
    Lee HS; Hwang SJ; Kim HK; Lee YS; Park J; Yu JS; Cho YW
    J Phys Chem Lett; 2012 Oct; 3(20):2922-7. PubMed ID: 26292227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-walled carbon nanotubes/lithium borohydride composites for hydrogen storage: role of
    Vellingiri L; Annamalai K; Kandasamy R; Kombiah I
    RSC Adv; 2019 Oct; 9(54):31483-31496. PubMed ID: 35527925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility and dynamics in the complex hydrides LiAlH4 and LiBH4.
    Borgschulte A; Jain A; Ramirez-Cuesta AJ; Martelli P; Remhof A; Friedrichs O; Gremaud R; Züttel A
    Faraday Discuss; 2011; 151():213-30; discussion 285-95. PubMed ID: 22455070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size Effect of MgO on the Ionic Conduction Properties of a LiBH
    Zhang R; Li H; Wang Q; Wei S; Yan Y; Chen Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8947-8954. PubMed ID: 35142501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Effects of Anion Substitution and Nanoconfinement on the Ionic Conductivity of Li-Based Complex Hydrides.
    Zettl R; de Kort L; Gombotz M; Wilkening HMR; de Jongh PE; Ngene P
    J Phys Chem C Nanomater Interfaces; 2020 Feb; 124(5):2806-2816. PubMed ID: 32064019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites.
    Miedema PS; Ngene P; van der Eerden AM; Sokaras D; Weng TC; Nordlund D; Au YS; de Groot FM
    Phys Chem Chem Phys; 2014 Nov; 16(41):22651-8. PubMed ID: 25231357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Li
    Wang H; Cao H; Zhang W; Chen J; Wu H; Pistidda C; Ju X; Zhou W; Wu G; Etter M; Klassen T; Dornheim M; Chen P
    Chemistry; 2018 Jan; 24(6):1342-1347. PubMed ID: 29024174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confinement-enhanced Li
    Hessling J; Lange M; Schönhoff M
    Phys Chem Chem Phys; 2023 Sep; 25(35):23510-23518. PubMed ID: 37646481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unique Double-Layered Carbon Nanobowl-Confined Lithium Borohydride for Highly Reversible Hydrogen Storage.
    Wu R; Zhang X; Liu Y; Zhang L; Hu J; Gao M; Pan H
    Small; 2020 Aug; 16(32):e2001963. PubMed ID: 32613757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of silica surface groups on the Li-ion conductivity of LiBH
    Ngene P; Lambregts SFH; Blanchard D; Vegge T; Sharma M; Hagemann H; de Jongh PE
    Phys Chem Chem Phys; 2019 Oct; 21(40):22456-22466. PubMed ID: 31580343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.