BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28286736)

  • 1. Overexpression of heparanase attenuated TGF-β-stimulated signaling in tumor cells.
    Batool T; Fang J; Barash U; Moustakas A; Vlodavsky I; Li JP
    FEBS Open Bio; 2017 Mar; 7(3):405-413. PubMed ID: 28286736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate.
    Escobar Galvis ML; Jia J; Zhang X; Jastrebova N; Spillmann D; Gottfridsson E; van Kuppevelt TH; Zcharia E; Vlodavsky I; Lindahl U; Li JP
    Nat Chem Biol; 2007 Dec; 3(12):773-8. PubMed ID: 17952066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heparanase promotes glioma progression via enhancing CD24 expression.
    Barash U; Spyrou A; Liu P; Vlodavsky E; Zhu C; Luo J; Su D; Ilan N; Forsberg-Nilsson K; Vlodavsky I; Yang X
    Int J Cancer; 2019 Sep; 145(6):1596-1608. PubMed ID: 31032901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis.
    Ilan N; Elkin M; Vlodavsky I
    Int J Biochem Cell Biol; 2006; 38(12):2018-39. PubMed ID: 16901744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer.
    Joyce JA; Freeman C; Meyer-Morse N; Parish CR; Hanahan D
    Oncogene; 2005 Jun; 24(25):4037-51. PubMed ID: 15806157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular structure of heparan sulfate from Spalax. Implications of heparanase and hypoxia.
    Sandwall E; Bodevin S; Nasser NJ; Nevo E; Avivi A; Vlodavsky I; Li JP
    J Biol Chem; 2009 Feb; 284(6):3814-22. PubMed ID: 19068480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected new roles for heparanase in Type 1 diabetes and immune gene regulation.
    Parish CR; Freeman C; Ziolkowski AF; He YQ; Sutcliffe EL; Zafar A; Rao S; Simeonovic CJ
    Matrix Biol; 2013 Jun; 32(5):228-33. PubMed ID: 23499527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: basic aspects and clinical applications.
    Vlodavsky I; Elkin M; Ilan N
    Rambam Maimonides Med J; 2011 Jan; 2(1):e0019. PubMed ID: 23908791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparanase coagulation and cancer progression.
    Nadir Y; Brenner B
    Best Pract Res Clin Haematol; 2009 Mar; 22(1):85-92. PubMed ID: 19285275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in Transforming Growth Factor Beta 1-modulated Growth, Collagen Turnover, and Differentiation of Stem Cells from Apical Papilla of Human Tooth.
    Chang HH; Chang MC; Wu IH; Huang GF; Huang WL; Wang YL; Lee SY; Yeh CY; Guo MK; Chan CP; Hsien HC; Jeng JH
    J Endod; 2015 Aug; 41(8):1272-80. PubMed ID: 26001858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparanase, tissue factor, and cancer.
    Nadir Y; Vlodavsky I; Brenner B
    Semin Thromb Hemost; 2008 Mar; 34(2):187-94. PubMed ID: 18645924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparanase in glomerular diseases.
    van den Hoven MJ; Rops AL; Vlodavsky I; Levidiotis V; Berden JH; van der Vlag J
    Kidney Int; 2007 Sep; 72(5):543-8. PubMed ID: 17519955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage.
    Kobayashi M; Naomoto Y; Nobuhisa T; Okawa T; Takaoka M; Shirakawa Y; Yamatsuji T; Matsuoka J; Mizushima T; Matsuura H; Nakajima M; Nakagawa H; Rustgi A; Tanaka N
    Differentiation; 2006 Jun; 74(5):235-43. PubMed ID: 16759289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells.
    Yoshimoto T; Fujita T; Kajiya M; Matsuda S; Ouhara K; Shiba H; Kurihara H
    Cytokine; 2015 Sep; 75(1):165-73. PubMed ID: 25882870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis.
    Martin L; De Santis R; Koczera P; Simons N; Haase H; Heinbockel L; Brandenburg K; Marx G; Schuerholz T
    PLoS One; 2015; 10(11):e0143583. PubMed ID: 26600070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HER-2 overexpression differentially alters transforming growth factor-beta responses in luminal versus mesenchymal human breast cancer cells.
    Wilson CA; Cajulis EE; Green JL; Olsen TM; Chung YA; Damore MA; Dering J; Calzone FJ; Slamon DJ
    Breast Cancer Res; 2005; 7(6):R1058-79. PubMed ID: 16457687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells.
    Reiland J; Kempf D; Roy M; Denkins Y; Marchetti D
    Neoplasia; 2006 Jul; 8(7):596-606. PubMed ID: 16867222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparanase affects adhesive and tumorigenic potential of human glioma cells.
    Zetser A; Bashenko Y; Miao HQ; Vlodavsky I; Ilan N
    Cancer Res; 2003 Nov; 63(22):7733-41. PubMed ID: 14633698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparanase multiple effects in cancer.
    Nadir Y; Brenner B
    Thromb Res; 2014 May; 133 Suppl 2():S90-4. PubMed ID: 24862152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.