These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 28286965)

  • 21. Platelet proteomics: from discovery to diagnosis.
    Looße C; Swieringa F; Heemskerk JWM; Sickmann A; Lorenz C
    Expert Rev Proteomics; 2018 Jun; 15(6):467-476. PubMed ID: 29787335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Density, Targeted Monitoring of Tyrosine Phosphorylation Reveals Activated Signaling Networks in Human Tumors.
    Stopfer LE; Flower CT; Gajadhar AS; Patel B; Gallien S; Lopez-Ferrer D; White FM
    Cancer Res; 2021 May; 81(9):2495-2509. PubMed ID: 33509940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer proteogenomics: current impact and future prospects.
    Mani DR; Krug K; Zhang B; Satpathy S; Clauser KR; Ding L; Ellis M; Gillette MA; Carr SA
    Nat Rev Cancer; 2022 May; 22(5):298-313. PubMed ID: 35236940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteogenomics: concepts, applications and computational strategies.
    Nesvizhskii AI
    Nat Methods; 2014 Nov; 11(11):1114-25. PubMed ID: 25357241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular make-up of a tumour: proteomics in cancer research.
    Kolch W; Mischak H; Pitt AR
    Clin Sci (Lond); 2005 May; 108(5):369-83. PubMed ID: 15831087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unravelling the biology of chromatin in health and cancer using proteomic approaches.
    Eubanks CG; Dayebgadoh G; Liu X; Washburn MP
    Expert Rev Proteomics; 2017 Oct; 14(10):905-915. PubMed ID: 28895440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering lymphoma pathogenesis via state-of-the-art mass spectrometry-based quantitative proteomics.
    Psatha K; Kollipara L; Voutyraki C; Divanach P; Sickmann A; Rassidakis GZ; Drakos E; Aivaliotis M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():2-14. PubMed ID: 27979587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic strategies to characterize signaling pathways.
    Harsha HC; Pinto SM; Pandey A
    Methods Mol Biol; 2013; 1007():359-77. PubMed ID: 23666735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of molecular targets of natural products by mass spectrometry.
    Cheng KW; Wong CC; Wang M; He QY; Chen F
    Mass Spectrom Rev; 2010; 29(1):126-55. PubMed ID: 19319922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathway proteomics and chemical proteomics team up in drug discovery.
    Hopf C; Bantscheff M; Drewes G
    Neurodegener Dis; 2007; 4(2-3):270-80. PubMed ID: 17596721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies.
    Deb B; George IA; Sharma J; Kumar P
    Methods Mol Biol; 2020; 2051():241-264. PubMed ID: 31552632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteogenomic interrogation of cancer cell lines: an overview of the field.
    Tsang O; Wong JWH
    Expert Rev Proteomics; 2021 Mar; 18(3):221-232. PubMed ID: 33877947
    [No Abstract]   [Full Text] [Related]  

  • 33. How may targeted proteomics complement genomic data in breast cancer?
    Guerin M; Gonçalves A; Toiron Y; Baudelet E; Audebert S; Boyer JB; Borg JP; Camoin L
    Expert Rev Proteomics; 2017 Jan; 14(1):43-54. PubMed ID: 27813428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic and genomic profiling of pancreatic cancer.
    Ansari D; Torén W; Zhou Q; Hu D; Andersson R
    Cell Biol Toxicol; 2019 Aug; 35(4):333-343. PubMed ID: 30771135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass spectrometry: uncovering the cancer proteome for diagnostics.
    van der Merwe DE; Oikonomopoulou K; Marshall J; Diamandis EP
    Adv Cancer Res; 2007; 96():23-50. PubMed ID: 17161675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass spectrometry-based signal networks elucidation.
    He K; Wang N; Li WH; Zhang XM
    Curr Opin Biotechnol; 2012 Feb; 23(1):120-5. PubMed ID: 22100035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies for kinome profiling in cancer and potential clinical applications: chemical proteomics and array-based methods.
    Piersma SR; Labots M; Verheul HM; Jiménez CR
    Anal Bioanal Chem; 2010 Aug; 397(8):3163-71. PubMed ID: 20526883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature.
    Poornima P; Kumar JD; Zhao Q; Blunder M; Efferth T
    Pharmacol Res; 2016 Sep; 111():290-302. PubMed ID: 27329331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomics for cancer drug design.
    Haymond A; Davis JB; Espina V
    Expert Rev Proteomics; 2019 Aug; 16(8):647-664. PubMed ID: 31353977
    [No Abstract]   [Full Text] [Related]  

  • 40. Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery.
    Indovina P; Marcelli E; Pentimalli F; Tanganelli P; Tarro G; Giordano A
    Mass Spectrom Rev; 2013; 32(2):129-42. PubMed ID: 22829143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.