These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28287090)

  • 21. Bright Electroluminescence from Single Graphene Nanoribbon Junctions.
    Chong MC; Afshar-Imani N; Scheurer F; Cardoso C; Ferretti A; Prezzi D; Schull G
    Nano Lett; 2018 Jan; 18(1):175-181. PubMed ID: 29215893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase.
    Huang Y; Dou WT; Xu F; Ru HB; Gong Q; Wu D; Yan D; Tian H; He XP; Mai Y; Feng X
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3366-3371. PubMed ID: 29397013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons.
    Wang XY; Urgel JI; Barin GB; Eimre K; Di Giovannantonio M; Milani A; Tommasini M; Pignedoli CA; Ruffieux P; Feng X; Fasel R; Müllen K; Narita A
    J Am Chem Soc; 2018 Jul; 140(29):9104-9107. PubMed ID: 29990420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry.
    Zhang W; Chen Z; Yang B; Wang XY; Berger R; Narita A; Barin GB; Ruffieux P; Fasel R; Feng X; Räder HJ; Müllen K
    Anal Chem; 2017 Jul; 89(14):7485-7492. PubMed ID: 28613832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications.
    Shekhirev M; Vo TH; Mehdi Pour M; Lipatov A; Munukutla S; Lyding JW; Sinitskii A
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):693-700. PubMed ID: 27933763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chiral-Selective Formation of 1D Polymers Based on Ullmann-Type Coupling: The Role of the Metallic Substrate.
    Pham TA; Tran BV; Nguyen MT; Stöhr M
    Small; 2017 Apr; 13(13):. PubMed ID: 28121375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution-Synthesized Extended Graphene Nanoribbons Deposited by High-Vacuum Electrospray Deposition.
    Scherb S; Hinaut A; Yao X; Götz A; Al-Hilfi SH; Wang XY; Hu Y; Qiu Z; Song Y; Müllen K; Glatzel T; Narita A; Meyer E
    ACS Nano; 2023 Jan; 17(1):597-605. PubMed ID: 36542550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.
    Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K
    J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Chemical Structure on Polymer-Templated Growth of Graphitic Nanoribbons.
    Liu N; Kim K; Jeong HY; Hsu PC; Cui Y; Bao Z
    ACS Nano; 2015 Sep; 9(9):9043-9. PubMed ID: 26267798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the emission frequency of graphene nanoribbon emitters based on spatially excited topological boundary states.
    Wu X; Wang R; Liu N; Zou H; Shao B; Shao L; Yam C
    Phys Chem Chem Phys; 2020 Apr; 22(16):8277-8283. PubMed ID: 32182306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertical heterostructures of MoS2 and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors.
    Yunus RM; Endo H; Tsuji M; Ago H
    Phys Chem Chem Phys; 2015 Oct; 17(38):25210-5. PubMed ID: 26352049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalyst-free bottom-up growth of graphene nanofeatures along with molecular templates on dielectric substrates.
    Min M; Seo S; Yoon Y; Cho K; Lee SM; Lee T; Lee H
    Nanoscale; 2016 Sep; 8(38):17022-17029. PubMed ID: 27714139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topology Classification using Chiral Symmetry and Spin Correlations in Graphene Nanoribbons.
    Jiang J; Louie SG
    Nano Lett; 2021 Jan; 21(1):197-202. PubMed ID: 33320677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self-Assembly and On-Surface Transformations.
    Ran W; Walz A; Stoiber K; Knecht P; Xu H; Papageorgiou AC; Huettig A; Cortizo-Lacalle D; Mora-Fuentes JP; Mateo-Alonso A; Schlichting H; Reichert J; Barth JV
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202111816. PubMed ID: 35077609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab initio characterization of graphene nanoribbons and their polymer precursors.
    Peköz R; Feng X; Donadio D
    J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction.
    Liu M; Song Y; He S; Tjiu WW; Pan J; Xia YY; Liu T
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4214-22. PubMed ID: 24559423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bottom-up fabrication of graphene nanostructures on Ru(1010).
    Song J; Zhang HJ; Cai Y; Zhang Y; Bao S; He P
    Nanotechnology; 2016 Feb; 27(5):055602. PubMed ID: 26671535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergetic Bottom-Up Synthesis of Graphene Nanoribbons by Matrix-Assisted Direct Transfer.
    McCurdy RD; Jacobse PH; Piskun I; Veber GC; Rizzo DJ; Zuzak R; Mutlu Z; Bokor J; Crommie MF; Fischer FR
    J Am Chem Soc; 2021 Mar; 143(11):4174-4178. PubMed ID: 33710887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
    Vo TH; Shekhirev M; Lipatov A; Korlacki RA; Sinitskii A
    Faraday Discuss; 2014; 173():105-13. PubMed ID: 25465679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.