These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28287143)

  • 21. Effects of electron doping on the stability of the metal hydride NaH.
    Olea-Amezcua MA; Rivas-Silva JF; de la Peña-Seaman O; Heid R; Bohnen KP
    J Phys Condens Matter; 2017 Apr; 29(14):145401. PubMed ID: 28251959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tetrahydrometalate species VH(2)(H(2)), NbH(4), and TaH(4): matrix infrared spectra and quantum chemical calculations.
    Wang X; Andrews L
    J Phys Chem A; 2011 Dec; 115(49):14175-83. PubMed ID: 22017260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.
    Rong W; He D; Wang M; Mou Z; Cheng J; Yao C; Li S; Trifonov AA; Lyubov DM; Cui D
    Chem Commun (Camb); 2015 Mar; 51(24):5063-5. PubMed ID: 25713818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.
    Morris RH
    Chem Rev; 2016 Aug; 116(15):8588-654. PubMed ID: 26963836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.
    del Rosal I; Maron L; Poteau R; Jolibois F
    Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.
    Maity A; Teets TS
    Chem Rev; 2016 Aug; 116(15):8873-911. PubMed ID: 27164024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DFT study on the mechanism of water-assisted dihydrogen elimination in group 6 octahedral metal hydride complexes.
    Sandhya KS; Suresh CH
    Dalton Trans; 2012 Aug; 41(36):11018-25. PubMed ID: 22859021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure-driven formation and stabilization of superconductive chromium hydrides.
    Yu S; Jia X; Frapper G; Li D; Oganov AR; Zeng Q; Zhang L
    Sci Rep; 2015 Dec; 5():17764. PubMed ID: 26626579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa.
    Kim DY; Scheicher RH; Ahuja R
    Phys Rev Lett; 2009 Aug; 103(7):077002. PubMed ID: 19792676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anionic tantalum dihydride complexes: heterobimetallic coupling reactions and reactivity toward small-molecule activation.
    Ostapowicz TG; Fryzuk MD
    Inorg Chem; 2015 Mar; 54(5):2357-66. PubMed ID: 25669136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discoloration Effect and One-Step Synthesis of Hydrogen Tungsten and Molybdenum Bronze (H
    Cui Y; Liang F; Ji C; Xu S; Wang H; Lin Z; Liu J
    ACS Omega; 2019 Apr; 4(4):7428-7435. PubMed ID: 31459839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis.
    Kobayashi Y; Tang Y; Kageyama T; Yamashita H; Masuda N; Hosokawa S; Kageyama H
    J Am Chem Soc; 2017 Dec; 139(50):18240-18246. PubMed ID: 29166007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Li
    Wang H; Cao H; Zhang W; Chen J; Wu H; Pistidda C; Ju X; Zhou W; Wu G; Etter M; Klassen T; Dornheim M; Chen P
    Chemistry; 2018 Jan; 24(6):1342-1347. PubMed ID: 29024174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scorpionate-type coordination in MFU-4l metal-organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites.
    Denysenko D; Grzywa M; Jelic J; Reuter K; Volkmer D
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5832-6. PubMed ID: 24846505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases.
    Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR
    Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic Hydricity of Transition Metal Hydrides.
    Wiedner ES; Chambers MB; Pitman CL; Bullock RM; Miller AJ; Appel AM
    Chem Rev; 2016 Aug; 116(15):8655-92. PubMed ID: 27483171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic and kinetic hydricities of metal-free hydrides.
    Ilic S; Alherz A; Musgrave CB; Glusac KD
    Chem Soc Rev; 2018 Apr; 47(8):2809-2836. PubMed ID: 29543931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H
    Belkova NV; Filippov OA; Shubina ES
    Chemistry; 2018 Feb; 24(7):1464-1470. PubMed ID: 29083506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.
    Li QZ; Qi H; Li R; Liu XF; Li WZ; Cheng JB
    Phys Chem Chem Phys; 2012 Mar; 14(9):3025-30. PubMed ID: 22286220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.
    Sandhya KS; Suresh CH
    Dalton Trans; 2014 Aug; 43(32):12279-87. PubMed ID: 24984110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.