These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 28287505)
41. The enduring utility of continuous culturing in experimental evolution. Gresham D; Dunham MJ Genomics; 2014 Dec; 104(6 Pt A):399-405. PubMed ID: 25281774 [TBL] [Abstract][Full Text] [Related]
42. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures. Gramazio S; Trauth J; Bezold F; Essen LO; Taxis C; Spadaccini R Biotechnol J; 2022 Aug; 17(8):e2100676. PubMed ID: 35481893 [TBL] [Abstract][Full Text] [Related]
43. Automated flow cytometry for acquisition of time-dependent population data. Abu-Absi NR; Zamamiri A; Kacmar J; Balogh SJ; Srienc F Cytometry A; 2003 Feb; 51(2):87-96. PubMed ID: 12541283 [TBL] [Abstract][Full Text] [Related]
44. In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay. Sung MK; Huh WK J Microbiol Methods; 2010 Nov; 83(2):194-201. PubMed ID: 20828586 [TBL] [Abstract][Full Text] [Related]
45. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Redchuk TA; Kaberniuk AA; Verkhusha VV Nat Protoc; 2018 May; 13(5):1121-1136. PubMed ID: 29700485 [TBL] [Abstract][Full Text] [Related]
46. Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae. Ye L; Berden JA; van Dam K; Kruckeberg AL Yeast; 2001 Sep; 18(13):1257-67. PubMed ID: 11561293 [TBL] [Abstract][Full Text] [Related]
47. Optical developments for optogenetics. Papagiakoumou E Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010 [TBL] [Abstract][Full Text] [Related]
48. An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation. Rullan M; Benzinger D; Schmidt GW; Milias-Argeitis A; Khammash M Mol Cell; 2018 May; 70(4):745-756.e6. PubMed ID: 29775585 [TBL] [Abstract][Full Text] [Related]
49. Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform. Lee HU; Nag S; Blasiak A; Jin Y; Thakor N; Yang IH ACS Chem Neurosci; 2016 Oct; 7(10):1317-1324. PubMed ID: 27570883 [TBL] [Abstract][Full Text] [Related]
50. Optogenetic control with a photocleavable protein, PhoCl. Zhang W; Lohman AW; Zhuravlova Y; Lu X; Wiens MD; Hoi H; Yaganoglu S; Mohr MA; Kitova EN; Klassen JS; Pantazis P; Thompson RJ; Campbell RE Nat Methods; 2017 Apr; 14(4):391-394. PubMed ID: 28288123 [TBL] [Abstract][Full Text] [Related]
51. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Glock C; Nagpal J; Gottschalk A Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970 [TBL] [Abstract][Full Text] [Related]