These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28287505)

  • 41. The enduring utility of continuous culturing in experimental evolution.
    Gresham D; Dunham MJ
    Genomics; 2014 Dec; 104(6 Pt A):399-405. PubMed ID: 25281774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.
    Gramazio S; Trauth J; Bezold F; Essen LO; Taxis C; Spadaccini R
    Biotechnol J; 2022 Aug; 17(8):e2100676. PubMed ID: 35481893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated flow cytometry for acquisition of time-dependent population data.
    Abu-Absi NR; Zamamiri A; Kacmar J; Balogh SJ; Srienc F
    Cytometry A; 2003 Feb; 51(2):87-96. PubMed ID: 12541283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay.
    Sung MK; Huh WK
    J Microbiol Methods; 2010 Nov; 83(2):194-201. PubMed ID: 20828586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.
    Redchuk TA; Kaberniuk AA; Verkhusha VV
    Nat Protoc; 2018 May; 13(5):1121-1136. PubMed ID: 29700485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae.
    Ye L; Berden JA; van Dam K; Kruckeberg AL
    Yeast; 2001 Sep; 18(13):1257-67. PubMed ID: 11561293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical developments for optogenetics.
    Papagiakoumou E
    Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.
    Rullan M; Benzinger D; Schmidt GW; Milias-Argeitis A; Khammash M
    Mol Cell; 2018 May; 70(4):745-756.e6. PubMed ID: 29775585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform.
    Lee HU; Nag S; Blasiak A; Jin Y; Thakor N; Yang IH
    ACS Chem Neurosci; 2016 Oct; 7(10):1317-1324. PubMed ID: 27570883
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optogenetic control with a photocleavable protein, PhoCl.
    Zhang W; Lohman AW; Zhuravlova Y; Lu X; Wiens MD; Hoi H; Yaganoglu S; Mohr MA; Kitova EN; Klassen JS; Pantazis P; Thompson RJ; Campbell RE
    Nat Methods; 2017 Apr; 14(4):391-394. PubMed ID: 28288123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Closed-Loop Optogenetic Brain Interface.
    Pashaie R; Baumgartner R; Richner TJ; Brodnick SK; Azimipour M; Eliceiri KW; Williams JC
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2327-37. PubMed ID: 26011877
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bimolecular fluorescence complementation (BiFC) technique in yeast Saccharomyces cerevisiae and mammalian cells.
    Weber-Boyvat M; Li S; Skarp KP; Olkkonen VM; Yan D; Jäntti J
    Methods Mol Biol; 2015; 1270():277-88. PubMed ID: 25702124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arrays of microscopic organic LEDs for high-resolution optogenetics.
    Steude A; Witts EC; Miles GB; Gather MC
    Sci Adv; 2016 May; 2(5):e1600061. PubMed ID: 27386540
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
    Milias-Argeitis A; Rullan M; Aoki SK; Buchmann P; Khammash M
    Nat Commun; 2016 Aug; 7():12546. PubMed ID: 27562138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid prototyping and design of cybergenetic single-cell controllers.
    Kumar S; Rullan M; Khammash M
    Nat Commun; 2021 Sep; 12(1):5651. PubMed ID: 34561433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-throughput multicolor optogenetics in microwell plates.
    Bugaj LJ; Lim WA
    Nat Protoc; 2019 Jul; 14(7):2205-2228. PubMed ID: 31235951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lysosome-associated miniSOG as a photosensitizer for mammalian cells.
    Ryumina AP; Serebrovskaya EO; Staroverov DB; Zlobovskaya OA; Shcheglov AS; Lukyanov SA; Lukyanov KA
    Biotechniques; 2016; 61(2):92-4. PubMed ID: 27528074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated calibration of optoPlate LEDs to reduce light dose variation in optogenetic experiments.
    Grødem EO; Sweeney K; McClean MN
    Biotechniques; 2020 Oct; 69(4):313-316. PubMed ID: 32722938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.